Home
Class 14
MATHS
If (a+b+4){ab + 4(a+b)} - 4ab = 0 and a ...

If `(a+b+4){ab + 4(a+b)} - 4ab = 0` and `a ne -4, b ne -4`, then `{(1)/((a+b+4)^(117))-2^(-234)}` is equal to -

A

`1/4^117`

B

`1/2^117`

C

`-1/2^234`

D

0

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If (a+b+4){ab+4(a+b)}-4ab = 0, a ne -4, b ne -4 , then, {1/((a+b+4)^117)-2^-234} is equal to : यदि (a+b+4){ab+4(a+b)}-4ab = 0 है, तथा a ne -4, b ne -4 है, तो {1/((a+b+4)^117)-2^-234} का मान क्या होगा ?

If (a-b)=4 and ab = 2, then (a^(3)-b^(3)) is equal to :

If (a ^(2) + b ^(2)) ^(3) = (a ^(3) + b ^(3)) ^(2) and ab ne 0, then ((a)/(b) + (b)/(a)) ^(6) is equal to

If a+b=1 , then a^(4)+b^(4)-a^(3)-b^(3)-2a^(2)b^(2)+ab is equal to :