Home
Class 14
MATHS
Given that x,y,z are positive real numbe...

Given that x,y,z are positive real numbers, if `(x+y)^2-z^2=8`, `(z+y)^2-x^2 =10`, and `(x+z)^2-y^2=7`, then (x+y+z) is equal to :
दिया गया है कि x, y और z धनात्मकवास्तविक संख्याएं है | यदि `(x+y)^2-z^2=8` है, `(z+y)^2-x^2 =10` है, और `(x+z)^2-y^2=7` है, तो (x+y+z) का मान किसके बराबर है ?

A

5

B

7

C

8

D

6

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If x.y,z are positive real numbers such that x^(2)+y^(2)+z^(2)=27, then x^(3)+y^(3)+z^(3) has

If (x)/(2x+y+z) =(y)/(x+2y+z) =(z)/(x+y+2z) then each terms is equal to