Home
Class 14
MATHS
If a = sqrt(8) - sqrt(7) and a = (1)/(b)...

If `a = sqrt(8) - sqrt(7)` and `a = (1)/(b)`, then `(a^(2) + b^(2) - 3ab)/(a^(2) + ab + b^(2))` is equal to

A

`27/31`

B

`27/32`

C

`29/33`

D

`29/31`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If a=sqrt8-sqrt7 and a=1/b , then (a^2+b^2-3ab)/(a^2+ab+b^2) is equal to यदि a=sqrt8-sqrt7 और a=1/b है, तो (a^2+b^2-3ab)/(a^2+ab+b^2) का मान क्या होगा ?

If a = (2 + sqrt3)/(2 - sqrt3) and b = (2 - sqrt3)/(2 + sqrt3) , then the value of (a^(2) + b^(2) +ab) is :

If a=(sqrt(5)+1)/(sqrt(5)-1) and b=(sqrt(5)-1)/(sqrt(5)+1), the value of ((a^(2)+ab+b^(2))/(a^(2)-ab+b^(2))) is (3)/(4) (b) (4)/(3)(c)(3)/(5)(d)(5)/(3)