Home
Class 14
MATHS
If the volume of a sphere is 4851 cm^3, ...

If the volume of a sphere is `4851 cm^3`, then its surface area (in `cm^2`) is: यदि एक गोले का आयतन `4851 cm^3` है, तो इसका क्षेत्रफल (`cm^2` में) है: (take `pi= 22/7`)

A

1323

B

2772

C

1337

D

1386

Text Solution

AI Generated Solution

The correct Answer is:
To find the surface area of a sphere given its volume, we can follow these steps: ### Step 1: Write down the formula for the volume of a sphere. The formula for the volume \( V \) of a sphere is given by: \[ V = \frac{4}{3} \pi r^3 \] where \( r \) is the radius of the sphere. ### Step 2: Set the volume equal to the given value. We know the volume of the sphere is \( 4851 \, \text{cm}^3 \). Thus, we can set up the equation: \[ \frac{4}{3} \pi r^3 = 4851 \] ### Step 3: Substitute the value of \( \pi \). Using \( \pi = \frac{22}{7} \), we substitute this into the equation: \[ \frac{4}{3} \cdot \frac{22}{7} \cdot r^3 = 4851 \] ### Step 4: Solve for \( r^3 \). First, multiply both sides by \( \frac{3}{4} \): \[ \frac{22}{7} r^3 = 4851 \cdot \frac{3}{4} \] Calculating the right side: \[ 4851 \cdot \frac{3}{4} = 3638.25 \] Now, multiply both sides by \( \frac{7}{22} \): \[ r^3 = 3638.25 \cdot \frac{7}{22} \] Calculating this gives: \[ r^3 = \frac{25467.75}{22} = 1153.125 \] ### Step 5: Find the cube root of \( r^3 \). To find \( r \), we take the cube root of \( 1153.125 \): \[ r = \sqrt[3]{1153.125} \approx 10.5 \, \text{cm} \] ### Step 6: Write down the formula for the surface area of a sphere. The formula for the surface area \( A \) of a sphere is: \[ A = 4 \pi r^2 \] ### Step 7: Substitute the value of \( r \) into the surface area formula. Substituting \( r \approx 10.5 \, \text{cm} \) and \( \pi = \frac{22}{7} \): \[ A = 4 \cdot \frac{22}{7} \cdot (10.5)^2 \] ### Step 8: Calculate \( (10.5)^2 \). Calculating \( (10.5)^2 \): \[ (10.5)^2 = 110.25 \] ### Step 9: Substitute and calculate the surface area. Now substituting back into the surface area formula: \[ A = 4 \cdot \frac{22}{7} \cdot 110.25 \] Calculating: \[ A = \frac{88}{7} \cdot 110.25 = \frac{9684}{7} \approx 1383.43 \, \text{cm}^2 \] ### Final Answer: Thus, the surface area of the sphere is approximately \( 1386 \, \text{cm}^2 \). ---
Promotional Banner

Topper's Solved these Questions

  • SSC CGL MAINS 2018 NUMBER SYSTEM

    PINNACLE|Exercise Exercise|28 Videos
  • SSC CHSL 2018 QUESTION PAPER

    PINNACLE|Exercise Exercise|600 Videos

Similar Questions

Explore conceptually related problems

If the volume of a sphere is 4851 cm^3 ,then the surface area (in cm^2 ) is: (Take pi = 22/7 ) यदि एक गोले का आयतन 4851 cm^3 है, तो सतह क्षेत्रफल ( cm^2 में) ज्ञात करें

The volume of a sphere is 4851 cm^(3) . Find its diameter.

If the volume of a sphere is 4851 cm^3 , then its surface area (in cm^2 )is : (Take pi=22/7 ) यदि एक गोले का आयतन 4851 घन सेमी है, तो इसका पृष्ठ क्षेत्रफल ( वर्ग सेमी में ) होगा :

If the surface area of a sphere is 1386 cm^2 , then its volume is: ( pi= 22/7 ) यदि एक गोले का सतह क्षेत्र 1386 cm^2 है, तो इसका आयतन है:( pi= 22/7 )

The volume of a hemisphere is 2425 1/2 cm^3 . Find its radius. (take pi= 22/7 ) एक गोलार्ध का आयतन 2425 1/2 cm^3 है तो उसकी त्रिज्या ज्ञात करे ( pi= 22/7 )

The volume of a cube is 216 cm^3 . What is the area of one face of the cube? किसी घन का आयतन 216 cm^3 है | इस घन के एक फलक का क्षेत्रफल ज्ञात करें |

If the surface area of a sphere is 346.5cm^2 , then its radius [taking pi =22/7] is- यदि एक गोले का पृष्ठ क्षेत्रफल 346.5 सेमी^2 है, तो उसकी त्रिज्या क्या होगी? (माना कि pi =22/7)

The volume of a solid right circular cylinder of height 8 cm is 392 pi cm^3 . Its curved surface area (in cm^2) is: 8 cm ऊंचाई वाले एक ठोस दाएं गोलाकार सिलेंडर का आयतन 392 pi cm ^ 3 है। इसकी घुमावदार सतह क्षेत्र (cm ^ 2 में) है:

The radius and height of a cone are 20 cm and 21 cm respectively. The total surface area (cm^2) of the cone is : किसी शंकु की त्रिज्या 20 cm तथा ऊंचाई 21 cm है, शंकु का कुल पृष्ठ क्षेत्रफल ( cm^2 में) है: (pi=22/7)

The diameter of a solid hemisphere is 35 cm. What is its total surface area ? ( pi=22/7 ) किसी ठोस अर्ध-गोले का व्यास 35 cm है| उसका कुल तल कितना है| ( pi=22/7 )

PINNACLE-SSC CGL MAINS ALL MENSURATION QUES 2018-Exercise
  1. A right circular solid cone of radius 3.2 cm and height 7.2 cm is melt...

    Text Solution

    |

  2. A cylindrical vessel of radius 3.5 m is full of water. If 15400 litres...

    Text Solution

    |

  3. A hemispherical bowl of internal diameter 36 cm is full of a liquid. T...

    Text Solution

    |

  4. If the curved surface area of a solid cylinder is one-third of its tot...

    Text Solution

    |

  5. The area of the base of a right circular cone is 400 pi and its height...

    Text Solution

    |

  6. A solid cube is cut into three cuboids of same volumes. What is the ra...

    Text Solution

    |

  7. If the volume of a sphere is 4851 cm^3, then its surface area (in cm^2...

    Text Solution

    |

  8. The base of a right prism is a triangle with sides 20 cm, 21 cm and 29...

    Text Solution

    |

  9. The radius and the height of a right circular cone are in the ratio 5:...

    Text Solution

    |

  10. The base of a right pyramid is an equilateral triangle with area 16 sq...

    Text Solution

    |

  11. N solid metallic spherical balls are melted and recast into a cylindri...

    Text Solution

    |

  12. A right prism has height 18cm and its base is a triangle with sides 5c...

    Text Solution

    |

  13. A sphere of maximum volume is cut out from a solid hemisphere. What is...

    Text Solution

    |

  14. The radius of the base of a right circular cylinder is 3 cm and its cu...

    Text Solution

    |

  15. A tank is in the form of a cuboid with length 12m. If 18kilolitre of w...

    Text Solution

    |

  16. A solid cylinder of base radius 12cm and height 15 cm is melted and re...

    Text Solution

    |

  17. The radius of the base of a right circular cylinder is increased by 20...

    Text Solution

    |

  18. The internal diameter of a hollow hemispherical vessel is 24 cm. It is...

    Text Solution

    |

  19. A 15 m deep well with radius 2.8 m is dug and the earth taken out from...

    Text Solution

    |

  20. A sector of radius 10.5 cm with the central angle 120^@ is folded to f...

    Text Solution

    |