Home
Class 11
MATHS
If (log x)/(b-c) = (log y)/(c-a) = (log ...

If `(log x)/(b-c) = (log y)/(c-a) = (log z)/(a-b)`, then which of the following is/are true?

Text Solution

Verified by Experts

Let `logx/(b-c) = logy/(c-a) = logz/(a-b) = k`
`=>logx = kb-kc,logy = kc-ka,logz = ka-kb`
`=>logx+logy+logz = kb-kc+kc-ka+ ka-kb`
`=>log(xyz) = 0`
`=>log(xyz) = log1`
`=>xyz = 1`
So, option `(a)` is the correct option.
Promotional Banner

Topper's Solved these Questions

  • LINEAR INEQUALITIES

    CENGAGE PUBLICATION|Exercise All Questions|68 Videos
  • PERMUTATIONS AND COMBINATIONS

    CENGAGE PUBLICATION|Exercise All Questions|430 Videos

Similar Questions

Explore conceptually related problems

If (log x)/(y-z) = (log y)/(z-x) = (log z)/(x-y) , then prove that xyz = 1 .

If (log x)/(b-c) = (log y)/(c-a) = (log z)/(a-b) , then prove that x^(b+c).y^(c+a).z^(a+b) = 1

If (log x)/(b-c) = (log y)/(c-a) = (log z)/(a-b) , then prove that x^(b^2+bc+c^2).y^(c^2+ca+a^2).z^(a^2+ab+b^2)=1

If (logx)/(ry-qz) = (log y)/(pz - rx) = (log z)/(qx - py) , then prove that x^(p) . Y^(q) . Z^(r ) = 1 .

If log ((x+y)/3)=1/2 (log x +log y) then find the value of x/y+y/x

If x=log_(a)(bc),y=log_(b)(ca) and z=log_(c )(ab) show that x+y+z+2=xyz

If log((x+y)/5) = 1/2 (log x + log y) , then show that x/y + y/x = 23 .

y = c log x - 2

If x = log_(a)^(bc) , y = log_(b)^(ca) and z = log_(c)^(ab) then show that frac(1)(x+1)+frac(1)(y+1)+frac(1)(z+1) = 1 , [abc ne 1]

Prove that (vi) log((a^2)/(bc)) + log ((b^2)/(ca)) + log ((c^2)/(ab)) = 0