Home
Class 11
MATHS
If y^2=x z and a^x=b^y=c^z , then prove...

If `y^2=x z and a^x=b^y=c^z ,` then prove that `(log)_ab=(log)_bc`

Promotional Banner

Topper's Solved these Questions

  • LINEAR INEQUALITIES

    CENGAGE PUBLICATION|Exercise All Questions|68 Videos
  • PERMUTATIONS AND COMBINATIONS

    CENGAGE PUBLICATION|Exercise All Questions|430 Videos

Similar Questions

Explore conceptually related problems

If x+z = 2y " and " b^2 = ac , then prove that a^(y-z)*b^(z-x)*c^(x-y) =1 .

If x^(2)+y^(2)=z^(2) , then prove that 1/(log_(z-y)x) + 1/(log_(z+y)x) = 2 .

If x : a = y : b = z : c , then prove that x^(3)/a^(2) + y^(3)/b^(2) + z^(3)/c^(2) = ((x+y+z)^(3))/((a+b+c)^(2))

If x : a = y : b = z : c , then prove that (a^(2) + b^(2) + c^(2))(x^(2) + y^(2) + z^(2)) = (ax + by + cz)^(2)

If x^(2)+y^(2) = 6xy , then prove that 2log(x+y) = log x + logy + 3log2 .

If a,b,c are in A.P and x,y,z are in G.P then prove that a^((b-c)log_(a)^(x))xxb^((c-a)log_(b)^(y))xxc^((a-b)log_(c )^(z))=1

If y=a^(1/(1-(log)_a x)) and z=a^(1/(1-(log)_a y)) ,then prove that x=a^(1/(1-(log)_a z))

If a/(y+z) = b/(z + x) = c/(x+y) , then prove that (a(b-c))/(y^(2)-z^(2)) = (b(c-a))/(z^(2)-x^(2)) = (c(a-b))/(x^(2)-y^(2)) .

If y log x= x-y , prove that (dy)/(dx)= (log x)/((1+log x)^(2))

If (y/z)^a (z/x)^b (x/y)^c=1 , then prove that (y/z)^((1)/(b-c))=(z/x)^((1)/(c-a))=(x/y)^((1)/(a-b)) .