Home
Class 11
MATHS
The area of a regular polygon of n sides...

The area of a regular polygon of `n` sides is (where `r` is inradius, `R` is circumradius, and `a` is side of the triangle (a) `(n R^2)/2sin((2pi)/n)` (b) `n r^2tan(pi/n)` (c) `(n a^2)/4cotpi/n` (d) `n R^2tan(pi/n)`

Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise All Questions|486 Videos

Similar Questions

Explore conceptually related problems

A B C is an equilateral triangle of side 4c mdot If R , r, a n d,h are the circumradius, inradius, and altitude, respectively, then (R+r)/h is equal to (a) 4 (b) 2 (c) 1 (d) 3

If tanx=ntany ,n in R^+, then the maximum value of sec^2(x-y) is equal to (a) ((n+1)^2)/(2n) (b) ((n+1)^2)/n (c) ((n+1)^2)/2 (d) ((n+1)^2)/(4n)

The value of lim_(n->oo) [tan(pi/(2n)) tan((2pi)/(2n))........tan((npi)/(2n))]^(1/n) is

Prove that sum_(r=0)^(n) ""^(n)C_(r).(n-r)cos((2rpi)/(n)) = - n.2^(n-1).cos^(n)'(pi)/(n) .

If inside a big circle exactly n(nlt=3) small circles, each of radius r , can be drawn in such a way that each small circle touches the big circle and also touches both its adjacent small circles, then the radius of big circle is r(1+cos e cpi/n) (b) ((1+tanpi/n)/(cospi/pi)) r[1+cos e c(2pi)/n] (d) (r[s inpi/(2n)+cos(2pi)/n]^2)/(sinpi/n)

If n is an integer, prove that, (ii) tan{(n pi)/2 + (-1)^(n) pi/4} = 1

If n is positive integer and "cos" (pi)/(2n)+"sin" (pi)/(2n) =(sqrt(n))/(2) , then prove that 4 le n le 8

Evaluate : underset(n to oo)lim(1)/(n)["tan"(pi)/(4n)+"tan"(2pi)/(4n)+"tan"(3pi)/(4n)+…+ "tan"(npi)/(4n)]

Evaluate : underset(n to oo)lim (1)/(n)[sin (pi/(2n))+sin((2pi)/(2n))+sin((3pi)/(2n))+…+ sin((npi)/(2n))]

CENGAGE PUBLICATION-TRIGONOMETRIC FUNCTIONS-All Questions
  1. Solve : (log)((-x^2-6x)//10)(sin3x+sinx)=(log)((-x^2-6x)//10)(sin2x)

    Text Solution

    |

  2. Find in degrees the angle subtended at the centre of a circle of di...

    Text Solution

    |

  3. The area of a regular polygon of n sides is (where r is inradius, R is...

    Text Solution

    |

  4. Find the value of theta which satisfy rsintheta=3 and r=4(1+sintheta)...

    Text Solution

    |

  5. If arcs of same length in two circles subtend angles of 60^0 and 75^0 ...

    Text Solution

    |

  6. If the sides a , b , c of a triangle A B C form successive terms of G....

    Text Solution

    |

  7. The number of solution of 16^(sin^2 x) + 16^(cos^2 x) = 10 : 0 le x le...

    Text Solution

    |

  8. If secx+sec^2x=1 then the value of tan^8x-tan^4x-2tan^2x+1 will be equ...

    Text Solution

    |

  9. In triangle A B C ,ifPdotQ ,R divides sidesB C ,A C , and A B , respec...

    Text Solution

    |

  10. Find the general value of theta which satisfy both sintheta=-1/2 and t...

    Text Solution

    |

  11. If sec alpha and alpha are the roots of x^2-p x+q=0, then (a) p^2=...

    Text Solution

    |

  12. Solve the equation sinx+cosx=1

    Text Solution

    |

  13. In the given figure A B is the diameter of the circle, centred at Odot...

    Text Solution

    |

  14. The value of expression (2sin^2 91^0-1)(2sin^2 92^0-1)......(2sin^2 18...

    Text Solution

    |

  15. Solve (tan3x-tan2x)/(1+tan3xtan2x )=1

    Text Solution

    |

  16. In a A B C ,ifA B=x , B C=x+1,/C=pi/3 , then the least integer value ...

    Text Solution

    |

  17. Solve tanx+tan2x+tan3x=tanxtan2xtan3x ,x in [0,pi]

    Text Solution

    |

  18. The value of cos(pi/7)+cos((2pi)/7)+cos((3pi)/7)+cos((4pi)/7)+cos((5pi...

    Text Solution

    |

  19. In a triangle A B C ,Da n dE are points on B Ca n dA C , respectivley,...

    Text Solution

    |

  20. A0, A1 ,A2, A3, A4, A5 be a regular hexagon inscribed in a circle of u...

    Text Solution

    |