Home
Class 11
MATHS
C F is the internal bisector of angle C ...

`C F` is the internal bisector of angle `C` of ` A B C` , then `C F` is equal to (a) `(2a b)/(a+b)cos(C/2)` (b) `(a+b)/(2a b)cosC/2` (c) `( bsinA)/(sin(B+C/2))` (d) none of these

Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise All Questions|486 Videos

Similar Questions

Explore conceptually related problems

(ii) (b-c) cos( A/2) = a sin ((B-C)/2)

If a,b,c are in H.P , b,c,d are in G.P and c,d,e are in A.P. , then the value of e is (a) (ab^(2))/((2a-b)^(2)) (b) (a^(2)b)/((2a-b)^(2)) (c) (a^(2)b^(2))/((2a-b)^(2)) (d) None of these

In A B C , the median A D divides /_B A C such that /_B A D :/_C A D=2:1 . Then cos(A/3) is equal to (sinB)/(2sinC) (b) (sinC)/(2sinB) (2sinB)/(sinC) (d) none of these

A, B and C are interior angles of a triangle ABC, then sin ((B + C)/(2)) =

With usual notations, in triangle A B C ,acos(B-C)+bcos(C-A)+c"cos"(A-B) is equal to(a) (a b c)/R^2 (b) (a b c)/(4R^2) (c) (4a b c)/(R^2) (d) (a b c)/(2R^2)

If a ,b ,and c are in A.P., then a^3+c^3-8b^3 is equal to (a). 2a b c (b). 6a b c (c). 4a b c (d). none of these

In triangle A B C ,/_A=30^0,H is the orthocenter and D is the midpoint of B C . Segment H D is produced to T such that H D=D T The length A T is equal to (a). 2B C (b). 3B C (c). 4/2B C (d). none of these

In triangle A B C ,a , b , c are the lengths of its sides and A , B ,C are the angles of triangle A B Cdot The correct relation is given by (a) (b-c)sin((B-C)/2)=acosA/2 (b) (b-c)cos(A/2)=asin((B-C)/2) (c) (b+c)sin((B+C)/2)=acosA/2 (d) (b-c)cos(A/2)=2asin(B+C)/2

(ix) (a^(2) sin (B-C))/(sinA) + (b^(2) sin (C-A))/(sin B) + (c^(2) sin (A-B))/(sin C)=0

(x) (a sin(B-C))/(b^(2)-c^(2)) = (b sin (C-A))/(c^(2)-a^(2)) = (c sin(A-B))/(a^(2)-b^(2))

CENGAGE PUBLICATION-TRIGONOMETRIC FUNCTIONS-All Questions
  1. In triangle A B C , prove that cos e c A/2+cos e c B/2+cos e c C/2geq...

    Text Solution

    |

  2. If x=(2sintheta)/(1+costheta+sintheta),t h e n(1-costheta+sintheta)/(1...

    Text Solution

    |

  3. C F is the internal bisector of angle C of A B C , then C F is equal ...

    Text Solution

    |

  4. Solve the equation 2(cos x+cos2x)+sin2x(1+2cos x)=2sinx for (-pilt=xlt...

    Text Solution

    |

  5. Which of the following is not the quadratic equation whose roots are c...

    Text Solution

    |

  6. If A+B+C=pi, prove that (tanA)/(tanBdottanC)+(tanB)/(tanAdott a n C...

    Text Solution

    |

  7. In triangle ABC, line joining the circumcenter and orthocenter is para...

    Text Solution

    |

  8. Solve 8sinx=(sqrt(3))/(cosx)+1/(sinx)

    Text Solution

    |

  9. If cos e ctheta-cottheta=q , then the value of cos e ctheta is

    Text Solution

    |

  10. If A+B+C=pi , prove that cotA+cotB+cotC-cos e cAdotcos e cBdotcos e cC...

    Text Solution

    |

  11. Let D be the middle point of the side B C of a triangle A B Cdot If th...

    Text Solution

    |

  12. Solve 2tantheta-cottheta=-1

    Text Solution

    |

  13. If sec^4theta+sec^2theta=10+tan^4theta+tan^2theta, then sin^2theta=

    Text Solution

    |

  14. If cos(A+B+C)=cosAcosBcosC , then find the value of (8sin(B+C)sin(C+A)...

    Text Solution

    |

  15. In the given figure, what is the radius of the inscribed circle? 3/2 ...

    Text Solution

    |

  16. Solve tan3theta=-1

    Text Solution

    |

  17. If sinA=sin^2Ba n d2cos^2A=3cos^2B then the triangle A B C is right...

    Text Solution

    |

  18. In triangle A B C , if cotA *cotC=1/2a n dcot B* cotC=1/(18), then t...

    Text Solution

    |

  19. If in a triangle A B C ,(1+cosA)/a+(1+cosB)/b+(1+cosC)/c =(k^2(1+cosA...

    Text Solution

    |

  20. Solve tantheta+tan2theta+sqrt(3)tanthetatan2theta=sqrt(3)

    Text Solution

    |