Home
Class 11
MATHS
Prove that (r1+r2)/(1+cosC)=2R...

Prove that `(r_1+r_2)/(1+cosC)=2R`

Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise All Questions|486 Videos

Similar Questions

Explore conceptually related problems

Prove that (r_(1) -r)/(a) + (r_(2) -r)/(b) = (c)/(r_(3))

Prove that r_1+r_2+r_3-r=4R

Prove that r_(1) r_(2) + r_(2) r_(3) + r_(3) r_(1) = (1)/(4) (a + b + c)^(2)

Let the incircle with center I of A B C touch sides BC, CA and AB at D, E, F, respectively. Let a circle is drawn touching ID, IF and incircle of A B C having radius r_2dot similarly r_1a n dr_3 are defined. Prove that (r_1)/(r-r_1)dot(r_2)/(r-r_2)dot(r_3)/(r-r_3)=(a+b+c)/(8R)

If I is the incenter of Delta ABC and R_(1), R_(2), and R_(3) are, respectively, the radii of the circumcircle of the triangle IBC, ICA, and IAB, then prove that R_(1) R_(2) R_(3) = 2r R^(2)

Let ABC be a triangle with incentre I and inradius r. Let D, E, F be the feet of the perpendiculars from I to the sides BC, CA and AB, respectively, If r_(2)" and "r_(3) are the radii of circles inscribed in the quadrilaterls AFIE, BDIF and CEID respectively, then prove that r_(1)/(r-r_(1))+r_(2)/(r-r_(2))+r_(3)/(r-r_(3))=(r_(1)r_(2)r_(3))/((r-r_(1))(r-r_(2))(r-r_(3)))

Let A B C be a triangle with incenter I and inradius rdot Let D ,E ,a n dF be the feet of the perpendiculars from I to the sides B C ,C A ,a n dA B , respectively. If r_1,r_2a n dr_3 are the radii of circles inscribed in the quadrilaterals A F I E ,B D I F ,a n dC E I D , respectively, prove that (r_1)/(r-1_1)+(r_2)/(r-r_2)+(r_3)/(r-r_3)=(r_1r_2r_3)/((r-r_1)(r-r_2)(r-r_3))

O is the circumcenter of A B Ca n dR_1, R_2, R_3 are respectively, the radii of the circumcircles of the triangle O B C ,O C A and OAB. Prove that a/(R_1)+b/(R_2)+c/(R_3) =(a b c)/(R_3)

Prove that 2R cos A = 2R + r - r_(1)

Prove that sum_(r=1)^(m-1)(2r^2-r(m-2)+1)/((m-r)^m C_r)=m-1/mdot

CENGAGE PUBLICATION-TRIGONOMETRIC FUNCTIONS-All Questions
  1. For triangle ABC,R=5/2 and r=1. Let I be the incenter of the triangle ...

    Text Solution

    |

  2. If 5tantheta=4, then (5sintheta-3costheta)/(5sintheta+2costheta) is eq...

    Text Solution

    |

  3. Prove that (r1+r2)/(1+cosC)=2R

    Text Solution

    |

  4. Number of solutions of the equation (sqrt(3)+1)^(2x)+(sqrt(3)-1)^(2x)=...

    Text Solution

    |

  5. Prove that cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)= 4cos((alph...

    Text Solution

    |

  6. If x=(sin^3P)/cos^2P,y=cos^3P/sin^2P" and " sinP+cosP=1/2 then find th...

    Text Solution

    |

  7. Number of solution(s) of the equation (sinx)/(cos3x)+(sin3x)/(cos9x)+(...

    Text Solution

    |

  8. prove that (sinA+sin3A+sin5A+sin7A)/(cosA+cos3A+cos5A+cos7A)=tan4A

    Text Solution

    |

  9. Prove that (r+r1)tan((B-C)/2)+(r+r2)tan((C-A)/2)+(r+r3)tan((A-B)/2)=0

    Text Solution

    |

  10. (a+2)sinalpha+(2a-1)cosalpha=(2a+1)iftanalpha"i s" (a) 3/4 (b) 4...

    Text Solution

    |

  11. If x , y in [0,2pi]a n dsinx+siny=2, then the value of x+y is

    Text Solution

    |

  12. Find the value of (1+cos (pi/8))(1+cos(3pi/8))(1+cos(5pi/8))(1+cos(7pi...

    Text Solution

    |

  13. Let A B C be a triangle with incentre at I Also, let P and Q be the fe...

    Text Solution

    |

  14. Let f(x)=log(log)(1/3)((log)7(sinx+a))) be defined for every real valu...

    Text Solution

    |

  15. Number of roots of cos^2x+(sqrt(3)+1)/2sinx-(sqrt(3))/4-1=0 which lie ...

    Text Solution

    |

  16. In A B C , on the side B C ,D and E are two points such that B D=D E=...

    Text Solution

    |

  17. Column I Column II In A B C , if cos24+cos2B+cos2C=-1 then we can ...

    Text Solution

    |

  18. If sintheta1+sintheta2+sintheta3=3, then costheta1+costheta2+costheta3...

    Text Solution

    |

  19. Number of integral values of a for which the equation cos^2x-sinx+a=0 ...

    Text Solution

    |

  20. It cos(alpha+beta)=4/5,sin(alpha-beta)=5/(13)and alpha,beta lie betwee...

    Text Solution

    |