Home
Class 12
MATHS
Show that there exists no polynomial f(x...

Show that there exists no polynomial `f(x)` with integral coefficients which satisfy `f(a)=b ,f(b)=c ,f(c)=a ,` where `a , b , c ,` are distinct integers.

Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE PUBLICATION|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

The polynomial f(x)=x^4+a x^3+b x^3+c x+d has real coefficients and f(2i)=f(2+i)=0. Find the value of (a+b+c+d)dot

Let f(x) be a polynomial function of second degree. If f (1) =f(-1) and a,b,c are in A.P. then f (a) , f'(b) , f'(c ) are in-

The domain of f(x)=ln(a x^3+(a+b)x^2+(b+c)x+c), where a >0, b^2-4ac=0 , is

The function f satisfying (f(b)-f(a))/(b-a)nef'(x) for any "x"in(a,b) is

Let f(x) = x^4 + ax^3 + bx^2 + cx + d be a polynomial with real coefficients and real roots. If |f(i)|=1where i=sqrt(-1) , then the value of a +b+c+d is

If a polynomial function f(x) satisfies f(f(f(x))=8x+21 , where p and q are real numbers, then p+q is equal to _______

If a polynomial function f(x) satisfies f(f(f(x))=8x+21 , where p and q are real numbers, then p+q is equal to _______

If f(x) is a twice differentiable function such that f(a)=0, f(b)=2, f(c)=-1,f(d)=2, f(e)=0 where a < b < c < de, then the minimum number of zeroes of g(x) = f'(x)^2+f''(x)f(x) in the interval [a, e] is

STATEMENT 1: If f(x) is continuous on [a , b] , then there exists a point c in (a , b) such that int_a^bf(x)dx=f(c)(b-a) STATEMENT 2: For a < b , if ma n dM are, respectively, the smallest and greatest values of f(x)on[a , b] , then m(b-a)lt=int_a^bf(x)dxlt=(b-a)Mdot

Let f(x) be continuous functions f: RvecR satisfying f(0)=1a n df(2x)-f(x)=xdot Then the value of f(3) is 2 b. 3 c. 4 d. 5

CENGAGE PUBLICATION-RELATIONS AND FUNCTIONS-All Questions
  1. Let f(x)=|x-1|dot Then (a)f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c)f(...

    Text Solution

    |

  2. Let f: RtoR ,f(x)=(x-a)/((x-b)(x-c)),b > c If f is onto, then prove...

    Text Solution

    |

  3. Show that there exists no polynomial f(x) with integral coefficients w...

    Text Solution

    |

  4. Find which of the following functions is even or odd ? f(x)=log((a-x)/...

    Text Solution

    |

  5. Let f(x) be defined on [-2,2] and be given by f(x)={−1;−2≤x≤0} andf(x)...

    Text Solution

    |

  6. The function f satisfies the functional equation 3f(x)+2f((x+59)/(x-1)...

    Text Solution

    |

  7. Let f:[-10, 10]->R ,w h e r ef(x)=sinx+[(x^2)/a], be an odd function. ...

    Text Solution

    |

  8. If a , b are two fixed positive integers such that f(a+x)=b+[b^3+1-3b^...

    Text Solution

    |

  9. Let f(x, y) be a periodic function satisfying the condition f(x, y) = ...

    Text Solution

    |

  10. The domain of the function f(x)=1/(sqrt({sinx}+{sin(pi+x)})) where ...

    Text Solution

    |

  11. Let f: R ->[0,pi/2) be defined by f(x)=tan^(-1)(x^2+x+a)dot Then the s...

    Text Solution

    |

  12. Let f(x)=([a]^2-5[a]+4)x^3-(6{a}^2-5{a}+1)x-(tan)x sin x be an even f...

    Text Solution

    |

  13. f(x)=cosx/([2x/pi]+1/2) where x is not an integral multiple of ...

    Text Solution

    |

  14. If f(x+y)=f(x)+f(y)-x y-1AAx , y in R and f(1)=1, then the number of ...

    Text Solution

    |

  15. If f(x)=(a^x)/(a^x+sqrt(a ,)),(a >0), then find the value of sum(r=1)...

    Text Solution

    |

  16. If f(x) is an invertible function and g(x)=2f(x)+5, then the value of ...

    Text Solution

    |

  17. If the function f:R rarr A is given by f(x)=(e^x-e^(-|x|))/(e^x+e^(|x|...

    Text Solution

    |

  18. If f:[0,oo)->[0,oo) and f(x)=x/(1+x), then f(x) is (a) one-on...

    Text Solution

    |

  19. The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) ...

    Text Solution

    |

  20. If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then the maximum value of (f(x))^2 i...

    Text Solution

    |