Home
Class 11
MATHS
Let Sn=1+2+3++n and Pn=(S2)/(S2-1)*(S3)...

Let `S_n=1+2+3++n` and `P_n=(S_2)/(S_2-1)*(S_3)/(S_3-1)*(S_4)/(S_4-1)* . . . *(S_n)/(S_n-1)` Where `n in N ,(ngeq2)dot` Then `lim_(n→oo)P_n=______`

Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Multiple correct answers type|11 Videos
  • LINEAR INEQUALITIES

    CENGAGE PUBLICATION|Exercise All Questions|68 Videos

Similar Questions

Explore conceptually related problems

Let S_(n)=cot^(-1)2 +cot^(-1)8 +cot^(-1)18 +cot^(-1)32+…. to n^(th) term. Then lim_(n to oo)S_(n) is

If S_(n)=(1^(2)-1+1)(1!)+(2^(2)-2+1)(2!)+...+(n^(2)-n+1)(n!) , then S_(50)=

If S_n=cot^(-1)(3)+cot^(-1)(7)+cot^(-1)(13)+cot^(-1)(21)+....n terms, then

If S_(1), S_(2), S_(3),…., S_(n) are the sums to infinity of n infinte geometric series whose first terms are 1,2,3,… n and whose common ratios are (1)/(2), (1)/(3), (1)/(4), ….(1)/(n+1) respectively, show that, S_(1) + S_(2) + S_(3) +…S_(n) = (1)/(2)n(n+3)

If S=a_1+a_2+......+a_n,a_i in R^+ for i=1 to n, then prove that S/(S-a_1)+S/(S-a_2)+......+S/(S-a_n) ge n^2/(n-1), AA n ge 2

If S_(1), S_(2), S_(3),...S_(n) are the sums of infinite geometric series, whose first terms are 1,2,3,...n whose ratios are (1)/(2),(1)/(3),(1)/(4) ,...(1)/(n+1) respectively, then find the value of S_(1)^(2)+S_(2)^(2)+S_(3)^(2)+...+S_(2n-1)^(2) .

The absolute value of the sum of first 20 terms of series, if S_(n)=(n+1)/(2) and (T_(n-1))/(T_(n))=(1)/(n^(2))-1 , where n is odd, given S_(n) and T_(n) denotes sum of first n terms and n^(th) terms of the series

The sum S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k) , where n=1,2,…. is

The value of lim_(n->oo)[(2n)/(2n^2-1)cos((n+1)/(2n-1))-n/(1-2n)dot(n(-1)^n)/(n^2+1)]i s (a) 1 (b) -1 (c) 0 (d) none of these

CENGAGE PUBLICATION-LIMITS AND DERIVATIVES-All Questions
  1. lim(x->0)(1-sqrt(cos2x)*root(3)(cos3x).....root(n)(cosnx))/x^2 has ...

    Text Solution

    |

  2. Evaluate the limit: lim(x->1)(sum (k=1) ^100 x^k-100)/(x-1)

    Text Solution

    |

  3. Let Sn=1+2+3++n and Pn=(S2)/(S2-1)*(S3)/(S3-1)*(S4)/(S4-1)* . . . *...

    Text Solution

    |

  4. If a(1)=1 and a(n+1)=(4+3a(n))/(3+2a(n)),nge1"and if" lim(ntooo) a(n)=...

    Text Solution

    |

  5. If L=lim(x->oo){x-x^2(log)e(1+1/x)}, then the value of 8L is

    Text Solution

    |

  6. Evaluate the limit: ("lim")(nrarroo)cos(pisqrt(n^2+n))when n is an in...

    Text Solution

    |

  7. Evaluate: lim(x->a)(sqrt(a+2x)-sqrt(3x))/(sqrt(3a+x)-2sqrt(x)),(a!=0)...

    Text Solution

    |

  8. Evaluate the limit: lim(x->0)(sqrt(2)-sqrt(1+cosx))/(sin^2x)

    Text Solution

    |

  9. Let f ''(x) be continuous at x=0 If lim(xto0) (2f(x)-3af(2x)+bf(8x))...

    Text Solution

    |

  10. Evaluate the limit: ("lim")(h -> 0)[1/(h(8+h)^(1/3))-1/(2h)]

    Text Solution

    |

  11. Evaluate: lim(x->0)(e-(1+x)^(1/x))/x

    Text Solution

    |

  12. Using lim(theta -> 0) (sintheta/theta)=1 prove that the area of circ...

    Text Solution

    |

  13. Evaluate: lim(x->1)sec(pi/(2x))logxdot

    Text Solution

    |

  14. Evaluate : [underset(x to 0)lim (sin x)/(x)], where [*] represents the...

    Text Solution

    |

  15. Let f(x)=lim(m->oo){lim(n->oo)cos^(2m)(n !pix)}, where x in Rdot Then...

    Text Solution

    |

  16. Evaluate: lim(x->pi/2)(1+cos2x)/((pi-2x)^2)

    Text Solution

    |

  17. Evaluate underset(ntooo)limn^(-n^(2))[(n+2^(0))(n+2^(-1))(n+2^(-2))......

    Text Solution

    |

  18. Solve: lim(x->oo)2^(x-1) tan(a/(2^x))

    Text Solution

    |

  19. Evaluate underset(xto pi//2)lim(sinx-(sinx)^(sinx))/(1-sinx+log(e)sinx...

    Text Solution

    |

  20. Evaluate: lim(x->2)(x^2-x-2)/(x^2-2x-"sin"(x-2))

    Text Solution

    |