Home
Class 11
MATHS
Evaluate : [underset(x to 0)lim (sin x)/...

Evaluate : `[underset(x to 0)lim (sin x)/(x)]`, where `[*]` represents the greatest integer function.

Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Multiple correct answers type|11 Videos
  • LINEAR INEQUALITIES

    CENGAGE PUBLICATION|Exercise All Questions|68 Videos

Similar Questions

Explore conceptually related problems

Evaluate : [lim_(x to 0) (sin x)/(x)] , where [*] represents the greatest integer function.

Evaluate : [lim_(x to 0) (tan x)/(x)] , where [*] represents the greatest integer function.

Evalute [lim_(xto0) (sin^(-1)x)/(x)]=1 , where [*] represets the greatest interger function.

underset(xrarr0)(lim)[(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

Evaluate : underset(x rarr 0)lim (sin(x^(2)-x))/x

Evaluate underset(xrarr0^(+))(lim)(x/a)[b/x] where [.] represents greatest integer function.

Draw the graph of |y|=[x] , where [.] represents the greatest integer function.

Evaluate : underset(xrarr0)"lim"(sin^(-1)x)/(2x)

Find x satisfying [tanx]+[cotx]=2, where [.] represents the greatest integer function.