Home
Class 11
MATHS
The polynomial x^6+4x^5+3x^4+2x^3+x+1 is...

The polynomial `x^6+4x^5+3x^4+2x^3+x+1` is divisible by_______ where `omega` is one of the imaginary cube roots of unity. (a) `x+omega` (b) `x+omega^2` (c) `(x+omega)(x+omega^2)` (d) `(x-omega)(x-omega^2)`

Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise All Questions|363 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1167 Videos

Similar Questions

Explore conceptually related problems

If omega is an imaginary cube root of unity and omega=(-1+sqrt3i)/(2) then omega^(2) =

If omega be an imaginary cube root or unity, prove that (x+y omega+ z omega^(2))^(4)+ (x omega+ y omega^(2)+z)^(4)+(x omega^(2)+y+ z omega)^(4)=0

If omega be an imaginary cube root of unity, show that (1+omega-omega^(2))(1-omega+omega^(2))=4

If omega is an imaginary cube root of unity, then the value of (1+ omega- omega^(2))(1- omega + omega ^(2)) is-

If omega is an imaginary cube root of unity then the value of (2-omega),(2-omega^(2))+2(2-omega)(3-omega^(2))+....+(n-1)(n-omega)(n-omega^(2)) is

omega is an imagianry cube root of unity, show that, (1-omega^(2))(1-omega^(4))(1-omega^(8))(1-omega^(10))=9

If omega be an imaginary cube root of unity, show that, (1-omega)(1-omega^(2))(1-omega^(4))(1-omega^(5))=9

If omega be an imaginary cube root of unity, show that (xomega^(2)+yomega+z)/(xomega+y+zomega^(2))=omega

Show that x^3-1=(x-1)(x-omega)(x-omega^2)

If omega is an imaginary cube root of unity, then (1+omega-omega^2)^7 is equal to (a) 128omega (b) -128omega (c) 128omega^2 (d) -128omega^2

CENGAGE PUBLICATION-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-All Questions
  1. If a b+b c+c a=0, then solve a(b-2c)x^2+b(c-2a)x+c(a-2b)=0.

    Text Solution

    |

  2. If (costheta +isintheta)(cos2theta +isin2theta).....(cosntheta + isinn...

    Text Solution

    |

  3. The polynomial x^6+4x^5+3x^4+2x^3+x+1 is divisible by where omega is o...

    Text Solution

    |

  4. If roots of equation 3x^2+5x+1=0 are (sectheta1-t a ntheta1) and (cos ...

    Text Solution

    |

  5. If roots of the equation a x^2+b x+c=0 be a quadratic equation and α,β...

    Text Solution

    |

  6. Find the principal argument of the complex number ((1+i)^5(1+sqrt(3i))...

    Text Solution

    |

  7. Form a quadratic equation with real coefficients whose one root is 3-2...

    Text Solution

    |

  8. Number of solutions of the equation z^3+[3(barz)^2]/|z|=0 where z is a...

    Text Solution

    |

  9. If the roots of the quadratic equation x^2+p x+q=0 are tan30^0 and tan...

    Text Solution

    |

  10. If x and y are complex numbers, then the system of equations (1+i)x+(1...

    Text Solution

    |

  11. If a ,b , and c are in A.P. and one root of the equation a x^2+bx+c=0 ...

    Text Solution

    |

  12. If z=x+iy (x, y in R, x !=-1/2), the number of values of z satisfying ...

    Text Solution

    |

  13. If K + |K + z^(2)| =| z|^(2) ( K in R^(-)) , then possible argument ...

    Text Solution

    |

  14. If alpha is the root (having the least absolute value) of the equation...

    Text Solution

    |

  15. If alpha,beta are roots of x^2-3x+a=0 , a in R and alpha &lt;1< beta...

    Text Solution

    |

  16. If z=x+iy and x^(2)+y^(2)=16, then the range of abs(abs(x)-abs(y)) is

    Text Solution

    |

  17. If a lt b lt c lt d, then for any real non-zero lambda, the quadratic...

    Text Solution

    |

  18. If k>0, |z|=|w|=k, and alpha=(z-bar w)/(k^2+zbar(w)), then Re(alpha) ...

    Text Solution

    |

  19. The quadratic x^2+a x+b+1=0 has roots which are positive integers, th...

    Text Solution

    |

  20. if z1 and z2 are two complex numbers such that absz1lt1ltabsz2 then p...

    Text Solution

    |