Home
Class 11
MATHS
Let f(x)=(x^2-9x+20)/(x-[x]) (where [x] ...

Let `f(x)=(x^2-9x+20)/(x-[x])` (where `[x]` is the greatest integer not greater than `xdot` Then (A)`("lim")_(x->5)f(x)=1` (B) `("lim")_(x->5)f(x)=0` (C) `("lim")_(x->5)f(x) ` does not exist. (D)none of these

Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Multiple correct answers type|11 Videos
  • LINEAR INEQUALITIES

    CENGAGE PUBLICATION|Exercise All Questions|68 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = (x^2-9x+20)/(x-[x]) where [x] denotes greatest integer less than or equal to x ), then

If f(x)=|x-1|-[x], \where\ [x] is the greatest integer less then or equal to x , then (A) f(1+0)=-1,f(1-0)=0 (B) f(1+0)=0=f(1-0) (C) ("lim")_(x to1)f(x) exists (D) ("lim")_(x to1)f(x) does not exist

The function f(x) =p [x+1] +q [x-1] where [x] is the greatest integer function, and lim _(xto1+) f(x) =lim _(x to 1-) f(x)= f(1) when-

If f(x)=(cosx)/((1-sinx)^(1/3)) then (a) ("lim")_(xrarrpi/2)f(x)=-oo (b) ("lim")_(xrarrpi/2)f(x)=oo (c) ("lim")_(xrarrpi/2)f(x)=0 (d) none of these

If f(x)=2|x|-3[x] where [x] denotes greatest integer in x not exceeding the value of x, find the value of f(2.5) and f(-2.5).

If f(x)= x-[x],x(phi0)inR , where [x] is greatest integer less than or equal to x, then the number of solution of f(x)+f(1/x)=1 are

If lim_(x->a)[f(x)g(x)] exists, then both lim_(xtoa)f(x) and lim_(x->a)g(x) exist.

If f(x)={{:((x-|x|)/(x)","xne0),(2", "x=0):}, show that lim_(xto0) f(x) does not exist.

If f(x)=(3x^2+a x+a+1)/(x^2+x-2), then which of the following can be correct (a) ("lim")_(x-> 1)f(x) for a=-2 (b) ("lim")(x->-2)f(x) for a=13 (c) ("lim")(x-> 1)f(x)=4/3 (d) ("lim")(x->-2)f(x)=-1/3

Given a real-valued function f such that f(x)={(tan^2{x})/((x^2-[x]^2) sqrt({x}cot{x}),for x 0 Where [x] is the integral part and {x} is the fractional part of x , then ("lim")_(xvec0^+)f(x)=1 , ("lim")_(xvec0^-)f(x)=cot1 , cot^(-1)(("lim")_(xvec0^-)f(x))^2=1 , tan^(-1)(("lim")_(xvec0^+)f(x))=pi/4

CENGAGE PUBLICATION-LIMITS AND DERIVATIVES-All Questions
  1. underset(xto1)lim[cosec(pix)/(2)]^(1//(1-x)) (where [.] represents the...

    Text Solution

    |

  2. Given lim(x to 0)(f(x))/(x^(2))=2, where [.] denotes the greatest inte...

    Text Solution

    |

  3. Let f(x)=(x^2-9x+20)/(x-[x]) (where [x] is the greatest integer not gr...

    Text Solution

    |

  4. Use formula lim(x->0)(a^x-1)/x=log(a) to find lim(x->0)(2^x-1)/((1+x)^...

    Text Solution

    |

  5. Evaluate : lim(x to 0) {tan(pi/4+x)}^(1/x)

    Text Solution

    |

  6. f(x) is the integral of (2sinx-sin2x)/(x^3),x!=0. Find lim(x->0)f^...

    Text Solution

    |

  7. Evaluate underset (h to 0) lim ((a+h)^(2) sin (a+h) -a^(2) sin a)/h .

    Text Solution

    |

  8. underset(xtooo)lim(x(logx)^(3))/(1+x+x^(2)) equals

    Text Solution

    |

  9. underset(xto0)lim((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

    Text Solution

    |

  10. lim(x to 1) (1-x)tan((pix)/2)

    Text Solution

    |

  11. If f(x)={sinx ,x!=npi,n in I2,ot h e r w i s e g(x)={x^2+1,x!=0,4,x=...

    Text Solution

    |

  12. ("lim")(xvec0)[min(y^2-4y+11)(sinx)/x](w h e r e[dot]d e not e st h e ...

    Text Solution

    |

  13. lim(x to pi/2)sin(xcosx)/("cos"(xsinx)) is equal to (a) 0 (b) pi/2 ...

    Text Solution

    |

  14. If lim xto0(x^(-3)sin3x+a x^(-2)+b) exists and is equal to 0, then (a)...

    Text Solution

    |

  15. If lim(xto0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  16. lim(xto1) ((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^...

    Text Solution

    |

  17. The value of lim(x->0)([(100 x)/(sinx)]+[(99sinx)/x]) (where [.] repre...

    Text Solution

    |

  18. The value of lim(x->1/(sqrt(2))) ((x-"cos" (sin^(-1)x))/ (1-tan(sin^(-...

    Text Solution

    |

  19. The value of underset(xtooo)lim((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((...

    Text Solution

    |

  20. Let lim(xto0) ([x]^(2))/(x^(2))=m, where [.] denotes greatest integer....

    Text Solution

    |