Home
Class 11
MATHS
If f(x)={sinx ,x!=npi,n in I2,ot h e r ...

If `f(x)={sinx ,x!=npi,n in I2,ot h e r w i s e` `g(x)={x^2+1,x!=0,4,x=0 5,x=2` then `("lim")_(xvec0)g{f(x)}i s=`

Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Multiple correct answers type|11 Videos
  • LINEAR INEQUALITIES

    CENGAGE PUBLICATION|Exercise All Questions|68 Videos

Similar Questions

Explore conceptually related problems

If f(x)={(sinx, x != npi " and " n in I_2), (2, " x=npi):} and g(x)={(x^2+1, x != 0),(4,x=0), (5, x=2):} then lim_(x->0) g{f(x)} is

f(x)={x ,xlt=0 1,x=0,t h e nfin d("lim")_(xvec0)f(x)x^2,x >0ife xi s t s

Let f(x)={x+1,x >0, 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

If f(x)=1/x ,g(x)=1/(x^2), and h(x)=x^2 , then (A) f(g(x))=x^2,x!=0,h(g(x))=1/(x^2) (B) h(g(x))=1/(x^2),x!=0,fog(x)=x^2 (C) fog(x)=x^2,x!=0,h(g(x))=(g(x))^2,x!=0 (D) none of these

If f(x)=sinx, g(x)=x^2 and h(x)=log x, find h[g{f(x)}].

If f(x)={(x^nsin(1/(x^2)),x!=0), (0,x=0):} , (n in I) , then (a) lim_(xrarr0)f(x) exists for n >1 (b) lim_(xrarr0)f(x) exists for n<0 (c) lim_(xrarr0)f(x) does not exist for any value of n (d) lim_(xrarr0)f(x) cannot be determined

Given a real-valued function f such that f(x)={(tan^2{x})/((x^2-[x]^2) sqrt({x}cot{x}),for x 0 Where [x] is the integral part and {x} is the fractional part of x , then ("lim")_(xvec0^+)f(x)=1 , ("lim")_(xvec0^-)f(x)=cot1 , cot^(-1)(("lim")_(xvec0^-)f(x))^2=1 , tan^(-1)(("lim")_(xvec0^+)f(x))=pi/4

Let f(x) be a function defined on (-a ,a) with a > 0. Assume that f(x) is continuous at x=0a n d(lim)_(xvec0)(f(x)-f(k x))/x=alpha,w h e r ek in (0,1) then a. f^(prime)(0^+)=0 b. f^(prime)(0^-)=alpha/(1-k) c. f(x) is differentiable at x=0 d. f(x) is non-differentiable at x=0

If f(x)={x-1,xgeq 1 2x^2-2,x 0-x^2+1,xlt=0,a n dh(x) =|x|,t h e n lim_(x->0)f(g(h(x))) is___

If f(x)=|x-2| a n d g(x)=f[f(x)],t h e n g^(prime)(x)= ______ for x>20

CENGAGE PUBLICATION-LIMITS AND DERIVATIVES-All Questions
  1. underset(xto0)lim((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

    Text Solution

    |

  2. lim(x to 1) (1-x)tan((pix)/2)

    Text Solution

    |

  3. If f(x)={sinx ,x!=npi,n in I2,ot h e r w i s e g(x)={x^2+1,x!=0,4,x=...

    Text Solution

    |

  4. ("lim")(xvec0)[min(y^2-4y+11)(sinx)/x](w h e r e[dot]d e not e st h e ...

    Text Solution

    |

  5. lim(x to pi/2)sin(xcosx)/("cos"(xsinx)) is equal to (a) 0 (b) pi/2 ...

    Text Solution

    |

  6. If lim xto0(x^(-3)sin3x+a x^(-2)+b) exists and is equal to 0, then (a)...

    Text Solution

    |

  7. If lim(xto0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  8. lim(xto1) ((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^...

    Text Solution

    |

  9. The value of lim(x->0)([(100 x)/(sinx)]+[(99sinx)/x]) (where [.] repre...

    Text Solution

    |

  10. The value of lim(x->1/(sqrt(2))) ((x-"cos" (sin^(-1)x))/ (1-tan(sin^(-...

    Text Solution

    |

  11. The value of underset(xtooo)lim((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((...

    Text Solution

    |

  12. Let lim(xto0) ([x]^(2))/(x^(2))=m, where [.] denotes greatest integer....

    Text Solution

    |

  13. underset(xto1)lim(xsin(x-[x]))/(x-1), where [.] denotes the greatest i...

    Text Solution

    |

  14. underset(xto0)lim[(sin(sgn(x)))/((sgn(x)))], where [.] denotes the gre...

    Text Solution

    |

  15. underset(xtooo)lim(2+2x+sin2x)/((2x+sin2x)e^(sinx)) is equal to

    Text Solution

    |

  16. If f(x)=(cosx)/((1-sinx)^(1/3)) then (a) ("lim")(xrarrpi/2)f(x)=-oo (b...

    Text Solution

    |

  17. lim(x->-oo)(x^2*tan(1/x))/(sqrt(8x^2+7x+1)) is

    Text Solution

    |

  18. T1 is an isosceles triangle in circle C. Let T2 be another ísoscele...

    Text Solution

    |

  19. If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f((pi)/...

    Text Solution

    |

  20. lim(xtooo) [((e)/(1-e))((1)/(e)-(x)/(1+x))]^(x) is :

    Text Solution

    |