Home
Class 11
MATHS
If z=[(sqrt(3)/2)+i/2]^5+[((sqrt(3))/2)-...

If `z=[(sqrt(3)/2)+i/2]^5+[((sqrt(3))/2)-i/2]^5` , then

a. `R e(z)=0`

b. `I m(z)=0`

c. `R e(z)>0`

d. `R e(z)>0,I m(z)<0`

Answer

Step by step text solution for If z=[(sqrt(3)/2)+i/2]^5+[((sqrt(3))/2)-i/2]^5 , then a. R e(z)=0 b. I m(z)=0 c. R e(z)>0 d. R e(z)>0,I m(z)<0 by MATHS experts to help you in doubts & scoring excellent marks in Class 11 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise All Questions|363 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1167 Videos

Similar Questions

Explore conceptually related problems

If z=((sqrt(3))/2+i/2)^5+((sqrt(3))/2-i/2)^5 , then prove that I m(z)=0.

If z=(sqrt3-i)/2 , then Find the. value of z^33

Knowledge Check

  • If z =(-2)/(1+sqrt3i), then the value of arg(z) is-

    A
    `pi/3`
    B
    `pi/6`
    C
    `-pi/3`
    D
    `(2pi)/(3)`
  • If iz^3+z^2-z+i=0 then the value of abs(z) is

    A
    2
    B
    1
    C
    `sqrt2`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    If Z=(sqrt3+i)/2 ,then the value of z^69 is

    If z!=0 is a complex number, then prove that R e(z)=0 rArr Im(z^2)=0.

    If z= 2+sqrt3i , then find overset(=)z dot

    If z= 2-sqrt3i , then find overset(=)z dot

    If z_(1)=1+isqrt3and z_(2)=sqrt3-i, show that arg""(z_(1))/(z_(2))=argz_(1)-argz_(2).

    z=i^5 then the value of (z+z^2+z^3+z^4)