Home
Class 11
MATHS
If alpha,beta are the roots of x^2+p x+q...

If `alpha,beta` are the roots of `x^2+p x+q=0a n dx^(2n)+p^n x^n+q^n=0a n di f(alpha//beta),(beta//alpha)` are the roots of `x^n+1+(x+1)^n=0,t h e nn( in N)` a. must be an odd integer b. may be any integer c. must be an even integer d. cannot say anything

Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise All Questions|363 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1167 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of x^2+px+q =0 and also of x^(2n)+p^n x^n+q^n=0 and if alpha/beta,beta/alpha are root of x^n+1+(x+1)^n =0, then n is

IF alpha,beta be the roots of the equation x^2+px+q=0 , show that 1/(alpha+beta) and 1/alpha+1/beta are the roots of pqx^2+(p^2+q)x+p=0

Let alpha,beta are the roots of x^2+b x+1=0. Then find the equation whose roots are (alpha+1//beta)a n d(beta+1//alpha) .

If alphaandbeta be the roots of the equation x^(2)-px+q=0 then, (alpha^(-1)+beta^(-1))=(p)/(q) .

If alpha,betaa n dgamma are roots of 7x^3-x-2=0 , then find the value of sum(alpha/beta+beta/alpha) .

Let alpha, beta be the roots of x^(2)-x-1=0 and S_(n)=a^(n)+beta^(n) , for all integers n ge 1 . Then for every integer n gt 2 ,

If alpha,beta are the roots of a x^2+b x+c=0a n dalpha+h ,beta+h are the roots of p x^2+q x+r=0t h e n h= a. -1/2(a/b-p/q) b. (b/a-q/p) c. 1/2(b/a-q/p) d. none of these

If alphaa n dbeta are the roots of x^2+p x+q=0a n dalpha^4,beta^4 are the roots of x^2-r x+s=0 , then the equation x^2-4q x+2q^2-r=0 has always. A. one positive and one negative root B . two positive roots C . two negative roots D . cannot say anything

Let alpha,beta be the roots of x^(2)-x-1=0ands_(n)=alpha^(n)+beta^(n) for all integers nge1 . Then for every integer nge2 -

Let alpha,beta be the roots of x^2-x-1=0 and S_n=alpha^n+beta^n , for all integers nge1 . Then for every integer nge2 ,

CENGAGE PUBLICATION-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-All Questions
  1. The region of argand diagram defined by |z-1|+|z+1|<=4 (1) interior o...

    Text Solution

    |

  2. z1, z2, z3,z4 are distinct complex numbers representing the vertices o...

    Text Solution

    |

  3. If alpha,beta are the roots of x^2+p x+q=0a n dx^(2n)+p^n x^n+q^n=0a n...

    Text Solution

    |

  4. If (log)(sqrt(3))((|z|^2-|z|+1)/(2+|z|))>2, then locate the region in ...

    Text Solution

    |

  5. If z=((1+isqrt3)^2)/(4i(1-isqrt3)) is a complex number then a. arg(...

    Text Solution

    |

  6. If alpha,beta,gamma are such that alpha+beta+gamma=2,""alpha^2+beta^2+...

    Text Solution

    |

  7. If z=3/(2+costheta+isintheta) then show that z lies on a circle in the...

    Text Solution

    |

  8. If z=x +i y such that |z+1|=|z-1| and arg((z-1)/(z+1))=pi/4 , then fin...

    Text Solution

    |

  9. If x y=2(x+y),xlt=y and x ,y in N , then the number of solutions of t...

    Text Solution

    |

  10. If I m((z-1)/(e^(thetai))+(e^(thetai))/(z-1))=0 , then find the locus ...

    Text Solution

    |

  11. If pa n dq are distinct prime numbers, then the number of distinct im...

    Text Solution

    |

  12. The number of real solutions of the equation (9//10)^x=-3+x-x^2 is a. ...

    Text Solution

    |

  13. What is locus of z if |z-1-sin^(-1)(1/sqrt3)|+|z+cos^(-1)(1/sqrt3)-p...

    Text Solution

    |

  14. If abs(z-2-i)=abszabssin(pi/4-argz) then locus of z is

    Text Solution

    |

  15. The number of integral values of a for which the quadratic equation (x...

    Text Solution

    |

  16. Ifomega is the imaginary cube root of unity and a+b+c=0 then show that...

    Text Solution

    |

  17. If z is a complex number having least absolute value and |z-2+2i|=1,th...

    Text Solution

    |

  18. If the equation cot^4x-2cos e c^2x+a^2=0 has at least one solution, th...

    Text Solution

    |

  19. Which of the following is equal to root(3)(-1) a. (sqrt(3)+sqrt(-1))/...

    Text Solution

    |

  20. If omega is the imaginary cube root of 1 then prove that (a+bomega+com...

    Text Solution

    |