Home
Class 11
MATHS
If |z-i R e(z)|=|z-I m(z)| , then prove ...

If `|z-i R e(z)|=|z-I m(z)|` , then prove that `z` , lies on the bisectors of the quadrants.

Text Solution

Verified by Experts

`z = x +iy`
`rArr Re (z) = x, Im (z) = y`
`|z - iRe(z)|=|z- Im (z)|`
`rArr |x + iy -ix|=|x + iy -y|`
`rArr x^(2) +(x-y)^(2) = (x-y)^(2) + y^(2)`
`rArr x^(2) = y^(2)`
` rArr |x| = |y|`
Hence, z lies on the bisectors the quadrants.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise All Questions|363 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1167 Videos

Similar Questions

Explore conceptually related problems

If |z-1| + |z + 3| le 8 , then prove that z lies on the circle.

If |z/| barz |- barz |=1+|z|, then prove that z is a purely imaginary number.

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If |z|=2a n d(z_1-z_3)/(z_2-z_3)=(z-2)/(z+2) , then prove that z_1, z_2, z_3 are vertices of a right angled triangle.

If z=r e^(itheta) , then prove that |e^(i z)|=e^(-r sintheta)

If |(Z-5i)/(Z+5i)|=1 ,then show that Z in R

Identify locus z if R e(z+1)=|z-1|

If a r g["z"_1("z"_3-"z"_2)]=a r g["z"_3("z"_2-"z"_1)] , then prove that O ,z_1, z_2, z_3 are concyclic, where O is the origin.

If z=(a+ib)^5+(b+ia)^5 then prove that Re(z)=Im(z), where a,b in R.

Let z=x+iy and omega=(1-iz)/(z-i). If |omega|=1 show the in the complex plane the point z lies on the real axis.

CENGAGE PUBLICATION-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-All Questions
  1. Find the complex number satisfying system of equation z^(3)=-((omega))...

    Text Solution

    |

  2. If x ,y in R satify the equation x^2+y^2-4x-2y+5=0, then the value of...

    Text Solution

    |

  3. If |z-i R e(z)|=|z-I m(z)| , then prove that z , lies on the bisectors...

    Text Solution

    |

  4. For any integer k let alphak=cos((kpi)/7)+isin((kpi)/7) where i=sqrt(-...

    Text Solution

    |

  5. If x=1+1/(3+1/(2+1/(3+1/(2)))) a 52/2 b. 55/71 c. 60/52 d....

    Text Solution

    |

  6. Show that (x^2+y^2)^4=(x^4-6x^2y^2+y^4)^2+(4x^3y-4x y^3)^2dot

    Text Solution

    |

  7. Let omega=e^(ipi/3),and a,b,c,x,y,z be non zero complex numbers such t...

    Text Solution

    |

  8. Find the values of a for which all the roots of the euation x^4-4x^3-8...

    Text Solution

    |

  9. if z is any complex number satisfying abs(z-3-2i)le2 then the minimum ...

    Text Solution

    |

  10. Let |(( bar z 1)-2( bar z 2))//(2-z1( bar z 2))|=1 and |z2|!=1,where z...

    Text Solution

    |

  11. If x=2+2^(2//3)+2^(1//3) , then the value of x^3-6x^2+6x is (a)3 ...

    Text Solution

    |

  12. Let 1,w,w^2 be the cube root of unity. The least possible degree of a ...

    Text Solution

    |

  13. If z1a n dz2 are complex numbers and u=sqrt(z1z2) , then prove that |z...

    Text Solution

    |

  14. The least value of the expression x^2+4y^2+3z^2-2x-12 y-6z+14 is a....

    Text Solution

    |

  15. If omega is an imaginary cube root of unity, then (1+omega-omega^2)^7 ...

    Text Solution

    |

  16. If |z|=1 and let omega=((1-z)^2)/(1-z^2) , then prove that the locus o...

    Text Solution

    |

  17. If x=2+2^(2//3)+2^(1//3) , then the value of x^3-6x^2+6x is (a)3 ...

    Text Solution

    |

  18. Let z=x+i ydot Then find the locus of P(z) such that (1+ bar z )/z ...

    Text Solution

    |

  19. (costheta + isintheta)^4/(sintheta + icostheta)^5 is equal to.

    Text Solution

    |

  20. Find the values of k for which |(x^2+k x+1)/(x^2+x+1)|<2,AAx in R

    Text Solution

    |