Home
Class 11
MATHS
If z1a n dz2 are complex numbers and u=s...

If `z_1a n dz_2` are complex numbers and `u=sqrt(z_1z_2)` , then prove that `|z_1|+|z_2|=|(z_1+z_2)/2+u|+|(z_1+z_2)/2-u|`

Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise All Questions|363 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1167 Videos

Similar Questions

Explore conceptually related problems

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If z_1a n dz_2 are two complex numbers and c >0 , then prove that |z_1+z_2|^2lt=(1+c)|z_1|^2+(1+c^(-1))|z_2|^2dot

For any two complex numbers z_1 and z_2 , , prove that Re (z_1 z_2) = Re z_1 Re z_2 – Imz_1 Imz_2

if z_1 and z_2 are two complex numbers such that absz_1lt1ltabsz_2 then prove that abs(1-z_1barz_2)/abs(z_1-z_2)lt1

If z_(1)and z_(2) are conjugate complex number, then z_(1)+z_(2) will be

If z_1 and z_2 are two complex no. st abs(z_1+z_2) = abs(z_1)+abs(z_2) then

If z_1a n dz_2 are two complex numbers such that |z_1|=|z_2|a n d arg(z_1)+a r g(z_2)=pi , then show that z_1,=- bar z _2dot

If z_1, z_2 are complex number such that (2z_1)/(3z_2) is purely imaginary number, then find |(z_1-z_2)/(z_1+z_2)| .

If z_1, z_2 are two complex numbers (z_1!=z_2) satisfying |z_1^2-z_2^2|=| z_ 1^2+ z _2 ^2-2( z _1)( z _2)| , then a. (z_1)/(z_2) is purely imaginary b. (z_1)/(z_2) is purely real c. |a r g z_1-a rgz_2|=pi d. |a r g z_1-a rgz_2|=pi/2

For any two complex numbers z_(1) and z_(2) , prove that Re (z_(1)z_(2)) = Re z_(1) Re z_(2)- Imz_(1) Imz_(2)

CENGAGE PUBLICATION-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-All Questions
  1. If x=2+2^(2//3)+2^(1//3) , then the value of x^3-6x^2+6x is (a)3 ...

    Text Solution

    |

  2. Let 1,w,w^2 be the cube root of unity. The least possible degree of a ...

    Text Solution

    |

  3. If z1a n dz2 are complex numbers and u=sqrt(z1z2) , then prove that |z...

    Text Solution

    |

  4. The least value of the expression x^2+4y^2+3z^2-2x-12 y-6z+14 is a....

    Text Solution

    |

  5. If omega is an imaginary cube root of unity, then (1+omega-omega^2)^7 ...

    Text Solution

    |

  6. If |z|=1 and let omega=((1-z)^2)/(1-z^2) , then prove that the locus o...

    Text Solution

    |

  7. If x=2+2^(2//3)+2^(1//3) , then the value of x^3-6x^2+6x is (a)3 ...

    Text Solution

    |

  8. Let z=x+i ydot Then find the locus of P(z) such that (1+ bar z )/z ...

    Text Solution

    |

  9. (costheta + isintheta)^4/(sintheta + icostheta)^5 is equal to.

    Text Solution

    |

  10. Find the values of k for which |(x^2+k x+1)/(x^2+x+1)|<2,AAx in R

    Text Solution

    |

  11. Identify locus z if R e(z+1)=|z-1|

    Text Solution

    |

  12. If z is a complex number satisfying z^4+z^3+2z^2+z+1=0 then the set of...

    Text Solution

    |

  13. Solve the equation sqrt(a(2^x-2)+1)=1-2^x for every value of the param...

    Text Solution

    |

  14. If |z1|=1,|z2|=2,|z3|=3,a n d|9z1z2+4z1z3+z2z3|=12 , then find the va...

    Text Solution

    |

  15. Let Z1 = (8 + i)sin theta + (7 + 4i)cos theta and Z2 = (1 + 8i)sin th...

    Text Solution

    |

  16. For alt=0 , determine all real roots of the equation x^2-2a|x-a|-3a^2=...

    Text Solution

    |

  17. Let A={a in R} the equation (1+2i)x^3-2(3+i)x^2+(5-4i)x+a^2=0 has at ...

    Text Solution

    |

  18. Express the following in a+i b form: ((cosalpha+isinalpha)^4)/((sinbe...

    Text Solution

    |

  19. Find the root of equation 2x^2+10 x + 20=0.

    Text Solution

    |

  20. Suppose that z is a complex number the satisfies |z-2-2i|lt=1. The max...

    Text Solution

    |