Home
Class 11
MATHS
If |z|=1 and let omega=((1-z)^2)/(1-z^2)...

If `|z|=1` and let `omega=((1-z)^2)/(1-z^2)` , then prove that the locus of `omega` is equivalent to `|z-2|=|z+2|`

Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise All Questions|363 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1167 Videos

Similar Questions

Explore conceptually related problems

If |z|=1 and z'=(1+z^(2))/(z) , then

If w=z/[z-1/(3i)] and |w|=1, then find the locus of z

If |z|=2a n d(z_1-z_3)/(z_2-z_3)=(z-2)/(z+2) , then prove that z_1, z_2, z_3 are vertices of a right angled triangle.

Let z be not a real number such that (1+z+z^2)//(1-z+z^2) in R , then prove that |z|=1.

If z=x+iyandw=(1-iz)/(z-i) such that |w|=1 , then show that z is purely real.

If z=z_0+A( bar z -( bar z _0)), w h e r eA is a constant, then prove that locus of z is a straight line.

If w=alpha+ibeta, where beta!=0 and z!=1 , satisfies the condition that ((w- bar w z)/(1-z)) is a purely real, then the set of values of z is |z|=1,z!=2 (b) |z|=1a n dz!=1 (c) z=bar z (d) None of these

Let z=x+iy and omega=(1-iz)/(z-i). If |omega|=1 show the in the complex plane the point z lies on the real axis.

If z_1nez_2 and abs(z_2)=1 the abs((z_1-z_2)/(1-barz_1z_2)) =

If z_1a n dz_2 are complex numbers and u=sqrt(z_1z_2) , then prove that |z_1|+|z_2|=|(z_1+z_2)/2+u|+|(z_1+z_2)/2-u|

CENGAGE PUBLICATION-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-All Questions
  1. The least value of the expression x^2+4y^2+3z^2-2x-12 y-6z+14 is a....

    Text Solution

    |

  2. If omega is an imaginary cube root of unity, then (1+omega-omega^2)^7 ...

    Text Solution

    |

  3. If |z|=1 and let omega=((1-z)^2)/(1-z^2) , then prove that the locus o...

    Text Solution

    |

  4. If x=2+2^(2//3)+2^(1//3) , then the value of x^3-6x^2+6x is (a)3 ...

    Text Solution

    |

  5. Let z=x+i ydot Then find the locus of P(z) such that (1+ bar z )/z ...

    Text Solution

    |

  6. (costheta + isintheta)^4/(sintheta + icostheta)^5 is equal to.

    Text Solution

    |

  7. Find the values of k for which |(x^2+k x+1)/(x^2+x+1)|<2,AAx in R

    Text Solution

    |

  8. Identify locus z if R e(z+1)=|z-1|

    Text Solution

    |

  9. If z is a complex number satisfying z^4+z^3+2z^2+z+1=0 then the set of...

    Text Solution

    |

  10. Solve the equation sqrt(a(2^x-2)+1)=1-2^x for every value of the param...

    Text Solution

    |

  11. If |z1|=1,|z2|=2,|z3|=3,a n d|9z1z2+4z1z3+z2z3|=12 , then find the va...

    Text Solution

    |

  12. Let Z1 = (8 + i)sin theta + (7 + 4i)cos theta and Z2 = (1 + 8i)sin th...

    Text Solution

    |

  13. For alt=0 , determine all real roots of the equation x^2-2a|x-a|-3a^2=...

    Text Solution

    |

  14. Let A={a in R} the equation (1+2i)x^3-2(3+i)x^2+(5-4i)x+a^2=0 has at ...

    Text Solution

    |

  15. Express the following in a+i b form: ((cosalpha+isinalpha)^4)/((sinbe...

    Text Solution

    |

  16. Find the root of equation 2x^2+10 x + 20=0.

    Text Solution

    |

  17. Suppose that z is a complex number the satisfies |z-2-2i|lt=1. The max...

    Text Solution

    |

  18. If 1//x+x=2costheta , then prove that x^n+1//x^n=2cosnthetadot

    Text Solution

    |

  19. If a x^2+b x+c=0 and b x^2+c x+a=0 have a common root and a, b, and c ...

    Text Solution

    |

  20. Find the roots of the equation 2x^2 - x + 1/8 = 0

    Text Solution

    |