Home
Class 11
MATHS
If i z^4+1=0, then prove that z can ta...

If `i z^4+1=0,` then prove that `z` can take the value `cospi//8+isinpi//8.`

Text Solution

Verified by Experts

`iz^(4) = -1`
`z^(4) = (-1)/(i)`
`or z^(4) =i`
`or z = (i) ^(1//4)`
`or z = (0+i)^(1//4)`
` or z=(0+i)^(1//4)`
`or z = (cos.(pi)/(2) + isin.(pi)/(2))^(1//4) = cos.(pi)/(8)+isin.(pi)/(8)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise All Questions|363 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1167 Videos

Similar Questions

Explore conceptually related problems

If |z-1| + |z + 3| le 8 , then prove that z lies on the circle.

if iz^3+z^2-z+i=0 then show that absz=1

If x/ (y+z) = y/(z+x) =z/(x+y) , then prove that the value of each ratio is either 1/2 or -1

If iz^3+z^2-z+i=0 then the value of abs(z) is

If |z-i R e(z)|=|z-I m(z)| , then prove that z , lies on the bisectors of the quadrants.

If z^3+(3+2i)z+(-1+i a)=0 has one real root, then the value of a lies in the interval (a in R) a.(-2,1) b. (-1,0) c. (0,1) d. (-2,3)

If z=i^(i^(i)) where i=sqrt-1 then find the value of |z|

If |z/| barz |- barz |=1+|z|, then prove that z is a purely imaginary number.

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

Prove that z=i^i, where i=sqrt-1, is purely real.

CENGAGE PUBLICATION-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-All Questions
  1. The number of complex numbers z such that |z|=1 and |z/ barz + barz/z...

    Text Solution

    |

  2. Given that x^2-3x+1=0, then the value of the expression y=x^9+x^7+x^(-...

    Text Solution

    |

  3. If i z^4+1=0, then prove that z can take the value cospi//8+isinpi//...

    Text Solution

    |

  4. Find the value of x such that ((x+alpha)^n-(x+beta)^n)/(alpha-beta)=(s...

    Text Solution

    |

  5. Suppose a ,b ,c in I such that the greatest common divisor for x^2+a ...

    Text Solution

    |

  6. Find the value of following expression: [(1-cospi/(10)+isinpi/(10))/(1...

    Text Solution

    |

  7. Dividing f(z) by z- i, we obtain the remainder i and dividing it by z...

    Text Solution

    |

  8. If the roots of the cubic equation, x^3+a x^2+b x+c=0 are three consec...

    Text Solution

    |

  9. If z1, z2 in C ,z1^2+z2^2 in R ,z1(z1^2-3z2^2)=2 and z2(3z1^2-z2^2)...

    Text Solution

    |

  10. If cosalpha+cosbeta+cosgamma=0 a n d a l so sinalpha+sinbeta+singamm...

    Text Solution

    |

  11. If x+y+z=12 andx^2+y^2+z^2=96 and 1/x+1/y+1/z=36 , then find the valu...

    Text Solution

    |

  12. Prove that (1+i)^n+(1-i)^n=2^((n+2)/2).cos((npi)/4), where n is a pos...

    Text Solution

    |

  13. The set {R e((2i z)/(1-z^2)): z is a complex number , |z|=1,z=+-1} is...

    Text Solution

    |

  14. If the equation x^2+ax+bc=0" and " x^2+bx+ca=0 have a common root, the...

    Text Solution

    |

  15. If a r g["z"1("z"3-"z"2)]=a r g["z"3("z"2-"z"1)] , then prove that O ,...

    Text Solution

    |

  16. If x" - "i y" "=sqrt((a-i b)/(c-i d)) prove that (x^2+y^2)^2=(a^2+b^2...

    Text Solution

    |

  17. If x^3+3x^2-9x+c is of the form (x-alpha)^2(x-beta) , then c is equ...

    Text Solution

    |

  18. If x=a+b,y=a alpha+b beta and z=abeta+ b alpha , where alpha and beta...

    Text Solution

    |

  19. If z=(a+ib)^5+(b+ia)^5 then prove that Re(z)=Im(z), where a,b in R.

    Text Solution

    |

  20. If a and b are positive numbers and eah of the equations x^2+a x+2b=0 ...

    Text Solution

    |