Home
Class 11
MATHS
If z=z0+A( bar z -( bar z 0)), w h e r e...

If `z=z_0+A( bar z -( bar z _0)), w h e r eA` is a constant, then prove that locus of `z` is a straight line.

Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE PUBLICATION|Exercise All Questions|363 Videos
  • CONIC SECTIONS

    CENGAGE PUBLICATION|Exercise All Questions|1167 Videos

Similar Questions

Explore conceptually related problems

z^2+zabsz+absz^2=0 then the locus of z is

if amp (z-1)/(z+1)=pi/3 , then the locus of z is

If abs(z+barz)=abs(z-barz) , then the locus of z is

If (x+y) prop z when y is constant and (z+x) prop y when z is constant . Then prove that (x+y+z) prop yz , when when y and z are both constant.

If w=z/[z-1/(3i)] and |w|=1, then find the locus of z

Given that the complex numbers which satisfy the equation | z bar z ^3|+| bar z z^3|=350 form a rectangle in the Argand plane with the length of its diagonal having an integral number of units, then area of rectangle is 48 sq. units if z_1, z_2, z_3, z_4 are vertices of rectangle, then z_1+z_2+z_3+z_4=0 rectangle is symmetrical about the real axis a r g(z_1-z_3)=pi/4or(3pi)/4

If z!=0 is a complex number, then prove that R e(z)=0 rArr Im(z^2)=0.

If z=r e^(itheta) , then prove that |e^(i z)|=e^(-r sintheta)

If z_1, z_2, z_3 are three nonzero complex numbers such that z_3=(1-lambda)z_1+lambdaz_2 where lambda in R-{0}, then prove that points corresponding to z_1, z_2 and z_3 are collinear .

Identify the locus of z if bar z = bar a +(r^2)/(z-a).

CENGAGE PUBLICATION-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-All Questions
  1. Let vertices of an acute-angled triangle are A(z1),B(z2),a n dC(z3)dot...

    Text Solution

    |

  2. If (18x^2+12x+4)^n = a0 +a(1x)+ a(2x)^2 +......+ a(2n)x^(2n), prove th...

    Text Solution

    |

  3. If z=z0+A( bar z -( bar z 0)), w h e r eA is a constant, then prove t...

    Text Solution

    |

  4. If (sinalpha)x^2-2x+bgeq2 for all real values of xlt=1a n dalpha in (0...

    Text Solution

    |

  5. If z1, z2, z3 are three complex numbers such that 5z1-13 z2+8z3=0, t...

    Text Solution

    |

  6. If one root x^2-x-k=0 is square of the other, then k= a.2+-sqrt(5)...

    Text Solution

    |

  7. If z1, z2 are complex number such that (2z1)/(3z2) is purely imaginary...

    Text Solution

    |

  8. If alpha,a n dbeta be the roots of the equation x^2+p x-1//2p^2=0,w h ...

    Text Solution

    |

  9. If z1,z2,z3 are complex numbers such that 2/z1=1/z2 + 1/z3, show that ...

    Text Solution

    |

  10. Find the range of f(x)(x^2-x+1)/(x^2+x+1)

    Text Solution

    |

  11. If ((3-z1)/(2-z1))((2-z2)/(3-z2))=k(k >0) , then prove that points A(z...

    Text Solution

    |

  12. x^2-x y+y^2-4x-4y+16=0 represents a. a point b. a circle c. ...

    Text Solution

    |

  13. If (x+i y)^5=p+i q , then prove that (y+i x)^5=q+i pdot

    Text Solution

    |

  14. If alpha,beta are the nonzero roots of a x^2+b x+c=0 and alpha^2,beta^...

    Text Solution

    |

  15. Find real theta such that (3+2isintheta)/(1-2isintheta) is purely real...

    Text Solution

    |

  16. If the roots of the equation a x^2+b x+c=0 are of the form (k+1)/k and...

    Text Solution

    |

  17. Prove that tan(iloge((a-ib)/(a+ib)))=(2ab)/(a^2-b^2) (where a, b in ...

    Text Solution

    |

  18. If alpha,beta are the roots of a x^2+b x+c=0a n dalpha+h ,beta+h are t...

    Text Solution

    |

  19. Find the real part of (1-i)^(-i)dot

    Text Solution

    |

  20. The equation (x^2+x+1)^2+1=(x^2+x+1)(x^2-x-5) for x in (-2,3) will h...

    Text Solution

    |