Home
Class 11
MATHS
Prove that (C0+C1)(C1+C2)(C2+C3)(C3+C...

Prove that `(C_0+C_1)(C_1+C_2)(C_2+C_3)(C_3+C_4)...........(C_(n-1)+C_n)` = `(C_0C_1C_2.....C_(n-1)(n+1)^n)/(n!)`

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|877 Videos

Similar Questions

Explore conceptually related problems

Prove that ^mC_1^n C_m-^m C_2^(2n)C_m+^m C_3^(3n)C_m-.....=(-1)^(m-1)n^mdot

Prove that C_0+2C_1+4C_2+8C_3+.....+2^nC_n=3^n .

Prove that .^n C_0 .^n C_0-^(n+1)C_1 . ^n C_1+^(n+2)C_2 . ^n C_2- .. =(-1)^n .

Prove that (C_1)/1-(C_2)/2+(C_3)/3-(C_4)/4+....+((-1)^(n-1))/n C_n=1+1/2+1/3+...+1/n

Prove that ^n C_0 .^n C_0-^(n+1)C_1 . ^n C_1+^(n+2)C_2 . ^n C_2-=(-1)^ndot

Prove that, C_(0)^(2)+C_(1)^(2)+C_(2)^(2)+.......+C_(n)^(2)=((2n)!)/(n!)^(2)

Prove that .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "…." + n xx .^(n)C_(n) = n2^(n-1) . Hence, prove that .^(n)C_(1).(.^(n)C_(2))^(2).(.^(n)C_(3))^(3)"......."(.^(n)C_(n))^(n) le ((2^(n))/(n+1))^(.^(n+1)C_(2)) AA n in N .

If (1+x)^n=C_0+C_1x+C_2x^2+...+C_n x^n , t h e n C_0-(C_0+C_1)+(C_0+C_1+C_2)-(C_0+C_1+C_2+C_3)+ ...+(-1)^(n-1)(C_0+C_1+ C_(n-1)) , where n a) is even integer b) is a positive value c) a negative value d) divisible by 2^(n-1)

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .

Prove that (C_1)/2+(C_3)/4+(C_5)/6+=(2^(n)-1)/(n+1)dot

CENGAGE PUBLICATION-BINOMIAL THEOREM-All Questions
  1. If the coefficients of three consecutive terms in the expansion of (1+...

    Text Solution

    |

  2. In the coefficients of rth, (r+1)t h ,a n d(r+2)t h terms in the binom...

    Text Solution

    |

  3. Prove that (C0+C1)(C1+C2)(C2+C3)(C3+C4)...........(C(n-1)+Cn) = (C0...

    Text Solution

    |

  4. If the coefficients of four consecutive terms in the expansion of (1+x...

    Text Solution

    |

  5. Find the sum of sum(r=1)^n r* (nCr)/(nC(r-1)

    Text Solution

    |

  6. Find the positive integer just greater than (1+0. 0001)^(10000)dot

    Text Solution

    |

  7. Find the last digit of 17^(256)dot

    Text Solution

    |

  8. If 10^m divides the number 101^(100)-1 then, find the greatest value o...

    Text Solution

    |

  9. Using the principle of mathematical induction, prove that (2^(3n)-1) i...

    Text Solution

    |

  10. If x is very large as compare to y , then prove that sqrt(x/(x+y))dot...

    Text Solution

    |

  11. Find the coefficient of x^n in the expansion of (1-9x+20 x^2)^(-1)dot

    Text Solution

    |

  12. Prove that the coefficient of x^r in the expansion of (1-2x)^(-1/2) is...

    Text Solution

    |

  13. Find the sum: 1-1/8+1/8xx3/(16)-(1xx3xx5)/(8xx16xx24)+...

    Text Solution

    |

  14. Show that sqrt3 =1+1/3+(1/3).(3/6)+(1/3).(3/6).(5/9)+.......

    Text Solution

    |

  15. Assuming x to be so small that x^2 and higher power of x can be neg...

    Text Solution

    |

  16. Find the sum sumsum(0lt=i<jlt=n-1)^n Cidot

    Text Solution

    |

  17. Find the condition for which the formula (a+b)^m = a^m+m a^(m-1)b+(m(...

    Text Solution

    |

  18. Find the value of x , for which 1/(sqrt(5+4x)) can be expanded as infi...

    Text Solution

    |

  19. Find the fourth term in the expansion of (1-2x)^(3//2)""dot

    Text Solution

    |

  20. Prove that ^nC0 "^(2n)Cn-^nC1 ^(2n-2)Cn +^nC2 ^(2n-4)Cn =2^n

    Text Solution

    |