Home
Class 11
MATHS
If the coefficients of four consecutive ...

If the coefficients of four consecutive terms in the expansion of `(1+x)^n` are `a_1,a_2,a_3` and `a_4` respectively. then prove that `a_1/(a_1+a_2)+a_3/(a_3+a_4)=2a_2/(a_2+a_3).

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|877 Videos

Similar Questions

Explore conceptually related problems

If the coefficient of-four successive termsin the expansion of (1+x)^n be a_1 , a_2 , a_3 and a_4 respectivel. Show that a_1/(a_1+a_2)+a_3/(a_3+a_4)=2 a_2/(a_2+a_3)

If a_1,a_2, a_3, a_4 be the coefficient of four consecutive terms in the expansion of (1+x)^n , then prove that: (a_1)/(a_1+a_2)+(a_3)/(a_3+a_4)=(2a_2)/(a_2+a_3)dot

If a_1, a_2 are the coefficients of x^n in the expansion of (1+x)^(2n) & (1+x)^(2n-1) respectively then a_1:a_2 will be

If a_1,a_2,a3,...,a_n are in A.P then show that 1/(a_1a_2)+1/(a_2a_3)+1/(a_3a_4)+...+1/(a_(n-1)a_n)=(n-1)/(a_1a_n)

If a_1, a_2,...... ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+.....+(a_(n-1))/(a_n)+(a_n)/(a_1)> n

If the points ( a_1,b_1),(a_2,b_2) and (a_1+a_2,b_1+b_2) are collinear ,show that a_1b_2=a_2b_1 .

Find the sum of first 24 terms of the A.P. a_1,a_2, a_3 ......., if it is inown that a_1+a_5+a_(10)+a_(15)+a_(20)+a_(24)=225.

If (1+x)^n=a_0+a_1x+a_2x^2+…..+a_nx^n then show that (a_0-a_2+a_4-……)^2+(a_1-a_3+a_5-……)^2=a_0+a_1+a_2+……a_n

If a_r=(cos2rpi+i sin 2rpi)^(19) , then prove that |[a_1,a_2,a_3],[a_4,a_5,a_6],[a_7,a_8,a_9]|=0 .

A sequence of no. a_1,a_2,a_3 ..... satisfies the relation a_n=a_(n-1)+a_(n-2) for nge2 . Find a_4 if a_1=a_2=1 .

CENGAGE PUBLICATION-BINOMIAL THEOREM-All Questions
  1. In the coefficients of rth, (r+1)t h ,a n d(r+2)t h terms in the binom...

    Text Solution

    |

  2. Prove that (C0+C1)(C1+C2)(C2+C3)(C3+C4)...........(C(n-1)+Cn) = (C0...

    Text Solution

    |

  3. If the coefficients of four consecutive terms in the expansion of (1+x...

    Text Solution

    |

  4. Find the sum of sum(r=1)^n r* (nCr)/(nC(r-1)

    Text Solution

    |

  5. Find the positive integer just greater than (1+0. 0001)^(10000)dot

    Text Solution

    |

  6. Find the last digit of 17^(256)dot

    Text Solution

    |

  7. If 10^m divides the number 101^(100)-1 then, find the greatest value o...

    Text Solution

    |

  8. Using the principle of mathematical induction, prove that (2^(3n)-1) i...

    Text Solution

    |

  9. If x is very large as compare to y , then prove that sqrt(x/(x+y))dot...

    Text Solution

    |

  10. Find the coefficient of x^n in the expansion of (1-9x+20 x^2)^(-1)dot

    Text Solution

    |

  11. Prove that the coefficient of x^r in the expansion of (1-2x)^(-1/2) is...

    Text Solution

    |

  12. Find the sum: 1-1/8+1/8xx3/(16)-(1xx3xx5)/(8xx16xx24)+...

    Text Solution

    |

  13. Show that sqrt3 =1+1/3+(1/3).(3/6)+(1/3).(3/6).(5/9)+.......

    Text Solution

    |

  14. Assuming x to be so small that x^2 and higher power of x can be neg...

    Text Solution

    |

  15. Find the sum sumsum(0lt=i<jlt=n-1)^n Cidot

    Text Solution

    |

  16. Find the condition for which the formula (a+b)^m = a^m+m a^(m-1)b+(m(...

    Text Solution

    |

  17. Find the value of x , for which 1/(sqrt(5+4x)) can be expanded as infi...

    Text Solution

    |

  18. Find the fourth term in the expansion of (1-2x)^(3//2)""dot

    Text Solution

    |

  19. Prove that ^nC0 "^(2n)Cn-^nC1 ^(2n-2)Cn +^nC2 ^(2n-4)Cn =2^n

    Text Solution

    |

  20. Prove that ^n C0 .^n C0-^(n+1)C1 . ^n C1+^(n+2)C2 . ^n C2-=(-1)^ndot

    Text Solution

    |