Home
Class 11
MATHS
Using the first principle, prove that: d...

Using the first principle, prove that: `d/(dx)(f(x)g(x))=f(x)d/(dx)(g(x))+g(x)d/(dx)(f(x))`

Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Multiple correct answers type|11 Videos
  • LINEAR INEQUALITIES

    CENGAGE PUBLICATION|Exercise All Questions|68 Videos

Similar Questions

Explore conceptually related problems

Using the first principle, prove that d/(dx)(1-x^2)=-2x

If f(x)=x^(3)+3x+4 and g is the inverse function of f(x), then the value of (d)/(dx)((g(x))/(g(g(x)))) at x = 4 equals

If a curve is represented parametrically by the equation x=f(t) and y=g(t)" then prove that "(d^(2)y)/(dx^(2))=-[(g'(t))/(f'(t))]^(3)((d^(2)x)/(dy^(2)))

Newton-Leinbnitz's formula states that d/dx(int_(phi(x))^(psi(x)) f(t)dt)=f(psi(x)){d/dxpsi(x)}-f(phi(x)){d/dxphi(x)} Answer the following questions based on above passage: Let f(x) be a differentiable function and f(1)=2, If lim_(xrarr1)int_2^(f(x)) (2t)/(x-1)dt=4 , then the value of f'(1) is equal to

Newton-Leinbnitz's formula states that d/dx(int_(phi(x))^(psi(x)) f(t)dt)=f(psi(x)){d/dxpsi(x)}-f(phi(x)){d/dxphi(x)} Answer the following questions based on above passage: If lim_(xrarr0)int_0^(x) (t^2dt)/((x-sinx)sqrt(a+t))=1 , then the value of a is

Newton-Leinbnitz's formula states that d/dx(int_(phi(x))^(psi(x)) f(t)dt)=f(psi(x)){d/dxpsi(x)}-f(phi(x)){d/dxphi(x)} Answer the following questions based on above passage: lim_(xrarr0)int_0^(x^2) ((cost)^2dt)/((xsinx))=

If f(x) = logx, then d/(dx)f(logx) =

The value of (d)/(dx)5^(f(x)) is -

The function y=f(x) is the solution of the differential equation (dy)/(dx)+(xy)/(x^(2)-1)=(x^(4)+2x)/(sqrt(1-x^(2))) in (-1, 1) satisfying f(0)=0 . Then underset((-sqrt(3))/(2))overset((sqrt(3))/(2))intf(x)dx is

Let the function ln f(x) is defined where f(x) exists for 2 geq x and k is fixed positive real numbers prove that if -k f(x) geq d/(dx) (x.f(x)) then f(x) geq Ax^(-k-1) where A is independent of x.

CENGAGE PUBLICATION-LIMITS AND DERIVATIVES-All Questions
  1. Differentiate the function with respect to x using the first principle...

    Text Solution

    |

  2. If x=t^2,y=t^3,t h e n(d^2y)/(dx^2) is (a)3/2 (b) 3/(4t) (c) 3/(2t) (...

    Text Solution

    |

  3. Using the first principle, prove that: d/(dx)(f(x)g(x))=f(x)d/(dx)(g(x...

    Text Solution

    |

  4. If y=x+e^x, then (d^2x)/(dy^2) is (a) e^x (b) - e^x/((1+e^x)^3) ...

    Text Solution

    |

  5. If y=(1+x^(1/4))(1+x^(1/2))(1-x^(1/4)) , then find (dy)/(dx)dot

    Text Solution

    |

  6. Let f(x)=(lim)(h->0)(("sin"(x+h))^(1n(x+h))-(sinx)^(1nx))/hdot Then f...

    Text Solution

    |

  7. If f(x)=x|x|, then prove that f^(prime)(x)=2|x|

    Text Solution

    |

  8. A function f: R->R satisfies sinxcosy(f(2x+2y)-f(2x-2y)=cosxsiny(f(2x+...

    Text Solution

    |

  9. If y=sqrt((1-cos2x)/(1+cos2x),)x in (0,pi/2)uu(pi/2,pi), then find (dy...

    Text Solution

    |

  10. If x=logp and y=1/p ,then (a)(d^2y)/(dx^2)-2p=0 (b) (d^2y)/(dx^2...

    Text Solution

    |

  11. If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !), show that (dy)/(dx)...

    Text Solution

    |

  12. Let y=ln(1+cosx)^2 . Then the value of (d^2y)/(dx^2)+2/(e^(y/2)) equal...

    Text Solution

    |

  13. Find (dy)/(dx)"for"y=xsinxlogxdot

    Text Solution

    |

  14. If the function f(x)=-4e^((1-x)/2)+1+x+(x^2)/2+(x^3)/3a n dg(x)=f^(-1)...

    Text Solution

    |

  15. Differentiate y=(e^x)/(1+sinx)

    Text Solution

    |

  16. Suppose that f(0)=0a n df^(prime)(0)=2, and let g(x)=f(-x+f(f(x)))dot ...

    Text Solution

    |

  17. lf y=sqrt((1-x)/(1+x)) find dy/dxand prove that (1-x^2)(dy)/(dx)+y=0

    Text Solution

    |

  18. If g(x)=(f(x))/((x-a)(x-b)(x-c)),where f(x) is a polynomial of degree ...

    Text Solution

    |

  19. If f(x) = cosx. cos2x. Cos4x. Cos8x.cos16x, then f '(pi/4) is :

    Text Solution

    |

  20. f(x)=e^(-1/x),w h e r ex >0, Let for each positive integer n ,Pn be th...

    Text Solution

    |