Home
Class 11
MATHS
Prove that (b^2+c^2)/(b+c)+(c^2+a^2)/(c...

Prove that `(b^2+c^2)/(b+c)+(c^2+a^2)/(c+a)+(a^2+b^2)/(a+b)> a+b+c`

Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|9 Videos
  • STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise All Questions|486 Videos

Similar Questions

Explore conceptually related problems

Without expanding prove that, |{:(b^2c^2,bc,b+c),(c^2a^2,ca,c+a),(a^2b^2,ab,a+b):}|=0

In any triangle ABC, prove that, (b^(2)-c^(2))cot A + (c^(2)-a^(2)) cot B + (a^(2)-b^(2)) cot C=0

Prove that a(b^(2) + c^(2)) cos A + b(c^(2) + a^(2)) cos B + c(a^(2) + b^(2)) cos C = 3abc

In any /_\ A B C , prove that (b^2-c^2)cotA+(c^2-a^2)cotB+(c^2-b^2)cotC=0

If a ,b ,c in R^+ , then the minimum value of a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2) is equal to (a) a b c (b) 2a b c (c) 3a b c (d) 6a b c

If a/b = b/c = c/d , then prove that (a^(2) + b^(2) + c^(2))(b^(2) + c^(2)+d^(2)) = (ab + bc cd)^(2)

if a:b = b:c prove that ((a+b)/(b+c))^2 = (a^2+b^2)/(b^2+c^2) .

If (b^(2) + c^(2) - a^(2))/(2bc), (c^(2) + a^(2) - b^(2))/(2ca), (a^(2) + b^(2) - c^(2))/(2ab) are in A.P. and a+b+c = 0 then prove that a(b+c-a), b(c+a-b), c(a+b-c) are in A.P.

If (b-c)^(2), (c-a)^(2), (a-b)^(2) are in A.P. then prove that, (1)/(b-c), (1)/(c-a), (1)/(a-b) are also in A.P.

If a,b,c are in GP, Prove that, a(b^2+c^2) =c(a^2+b^2)

CENGAGE PUBLICATION-SEQUENCES AND SERIES-All Questions
  1. If the sum of the roots of the quadratic equation a x^2+b x+c=0 is equ...

    Text Solution

    |

  2. Let Tr denote the rth term of a G.P. for r=1,2,3, If for some positive...

    Text Solution

    |

  3. Prove that (b^2+c^2)/(b+c)+(c^2+a^2)/(c+a)+(a^2+b^2)/(a+b)> a+b+c

    Text Solution

    |

  4. If y z+z x+x y=12 , and x , y , z are positive values, find the great...

    Text Solution

    |

  5. If S=a1+a2+......+an,ai in R^+ for i=1 to n, then prove that S/(S-a1)...

    Text Solution

    |

  6. If m >1,n in N show that 1^m+2^m+2^(2m)+2^(3m)+...+2^(n m-m)> n^(1-m)...

    Text Solution

    |

  7. If a ,b >0 such that a^3+b^3=2, then show that a+blt=2.

    Text Solution

    |

  8. Prove that 2^n >1+nsqrt(2^(n-1)),AAn >2 where n is a positive integer.

    Text Solution

    |

  9. In a triangle A B C prove that a/(a+c)+b/(c+a)+c/(a+b)<2

    Text Solution

    |

  10. Find the least value of secA+secB+secC in an acute angled triangle.

    Text Solution

    |

  11. Prove that [(n+1)//2]^n >(n !)dot

    Text Solution

    |

  12. If a1+a2+a3+......+an=1 AA ai > 0, i=1,2,3,......,n, then find the ma...

    Text Solution

    |

  13. If a ,b ,c are positive, then prove that a//(b+c)+b//(c+a)+c//(a+b)geq...

    Text Solution

    |

  14. If (log)(10)(x^3+y^3)-(log)(10)(x^2+y^2-x y)lt=2, and x ,y are positiv...

    Text Solution

    |

  15. If log2(a+b)+log2(c+d)ge4 . Then the minimum value of the expression a...

    Text Solution

    |

  16. If a+b+c=1, then prove that 8/(27a b c)>{1/a-1}{1/b-1}{1/c-1}> 8.

    Text Solution

    |

  17. If a ,b , a n dc are distinct positive real numbers such that a+b+c=1,...

    Text Solution

    |

  18. If a^2+b^2+c^2-ab-bc-ca=0 then, prove that a=b=c

    Text Solution

    |

  19. Find the minimum value of 4sin^(2)x+4cos^(2)x .

    Text Solution

    |

  20. Prove that (a b+x y)(a x+b y)>4a b x y(a , b ,x ,y >0)dot

    Text Solution

    |