Home
Class 11
MATHS
Suppose p(x) = a0 + a1x + a2x^2 +…+ anx^...

Suppose `p(x) = a_0 + a_1x + a_2x^2 +…+ a_nx^n`. If `|p(x)| le |e^(x-1) - 1| le 1` then prove |a1 + 2a2 +...... + n an| ≤ 1.

Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Multiple correct answers type|11 Videos
  • LINEAR INEQUALITIES

    CENGAGE PUBLICATION|Exercise All Questions|68 Videos

Similar Questions

Explore conceptually related problems

1/(x+2)le0

(x+1)/3le(2x-1)/4,x in R

If 0 le x le 1, then the minimum value of (x^(2) +x+1) is-

If (1+x-2x^2)^6=1+a_1x+a_2x^2+……+a_(12)x^12 then

If the function f(x) ={x+1 if x le 1 , 2x+1 if 1 lt x le 2 and g(x) = {x^2 if -1 le x le 2 , x+2 if 2 le x le 3 then the number of roots of the equation f(g(x))=2

If |a_1sinx+a_2sin2x++a_nsinn x|lt=|sinx| for x in R , then prove that |a_1+2a_2+3a_3+n a_n|lt=1

If (1+x+x^2)^n=a_0+a_1x+a_2x^2+.......+a_(2n)x^(2n) , then prove that a_0+a_2+a_4+....+a_(2n)=1/2(3^n+1) .

Let P(x)=a_0+a_1x^2+a_2x^4++a_n x^(2n) be a polynomial in a real variable x with 0 < a_0 < a_1 < a_2 <......< a_n . The function P(x) has a. neither a maximum nor a minimum b. only one maximum c. only one minimum d. only one maximum and only one minimum e. none of these

Solve (x)/(x+2) le (1)/(|x|)

Let f(x)=a_0+a_1x+a_2x^2+.....+a_nx^n+ ....and f(x)/(1-x)=b_0+b_1x+b_2x^2+.....+b_nx^n+ ...., then

CENGAGE PUBLICATION-LIMITS AND DERIVATIVES-All Questions
  1. If f(x)=sin^(-1)cosx , then the value of f(10)+f^(prime)(10) is (a)11-...

    Text Solution

    |

  2. If (sinx)(cosy)=1/2, then (d^2y)/(dx^2) at (pi/4,pi/4) is (a) -4 (b) -...

    Text Solution

    |

  3. Suppose p(x) = a0 + a1x + a2x^2 +…+ anx^n. If |p(x)| le |e^(x-1) - 1| ...

    Text Solution

    |

  4. Let f(x+y)=f(x)dotf(y) for all xa n dydot Suppose f(5)=2a n df^(prime)...

    Text Solution

    |

  5. A function f satisfies the condition f(x)=f^(prime)(x)+f''(x)+f'''(x)....

    Text Solution

    |

  6. Let f(x y)=f(x)f(y)AAx , y in R and f is differentiable at x=1 such...

    Text Solution

    |

  7. Let f(x) be a polynomial of degree 3 such that f(3)=1,f^(prime)(3)=-1,...

    Text Solution

    |

  8. Find (dy)/(dx) for the functions: y=x^3e^xsinx

    Text Solution

    |

  9. d/(dx)[tan^(-1)((sqrt(x)(3-x))/(1-3x))] is (a) 1/(2(1+x)sqrt(x)) (b...

    Text Solution

    |

  10. If y=tan^(-1)(1/(1+x+x^2))+tan^(-1)(1/(x^2+3x+3))+tan^(-1)(1/(x^2+5x+7...

    Text Solution

    |

  11. Let g(x) be the inverse of an invertible function f(x) which is diff...

    Text Solution

    |

  12. If sqrt(1-x^6)+sqrt(1-y^6) = a(x^3-y^3) then prove that (dy)/(dx)= x^2...

    Text Solution

    |

  13. Let f: RrarrR be such that f (1) = 3 and f' (1) = 6 Then, lim(xrarr0)(...

    Text Solution

    |

  14. if cos y=x cos (a+y), (a!= 0) , then show that dy/dx= cos ^2(a+y)/sin ...

    Text Solution

    |

  15. Let f(x)=|[x^3,sinx,cosx],[6,-1, 0],[p, p^2,p^3]|, where p is a cons...

    Text Solution

    |

  16. Find (dy)/(dx) for y=sin^(-1)(cosx)

    Text Solution

    |

  17. True or False -The derivative of an even function is always an odd fun...

    Text Solution

    |

  18. If y=sqrt((a-x)(x-b))- (a-b)tan^(-1)sqrt((a-x)/(x-b)) then (dy)/(dx)...

    Text Solution

    |

  19. Let F(x)=f(x)g(x)h(x) for all real x, where f(x),g(x), and h(x) are di...

    Text Solution

    |

  20. Find (dy)/(dx) for y=tan^(-1){(1-cosx)/(sinx)}.

    Text Solution

    |