Home
Class 11
MATHS
If a+b=1,a >0, prove that (a+1/a)^2+(b+1...

If `a+b=1,a >0,` prove that `(a+1/a)^2+(b+1/b)^2geq(25)/2dot`

Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|9 Videos
  • STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise All Questions|486 Videos

Similar Questions

Explore conceptually related problems

If a+b+c= 0 prove that 1/(2a^2+bc)+1/(2b^2+ca)+1/(2c^2+ab)=0

In A B C , prove that (a-b)^2cos^2C/2+(a+b)^2sin^2C/2=c^2dot

If a ,b ,a n dc are positive and a+b+c=6, show that (a+1//b)^2+(b+1//c)^2+(c+1//a)^2geq75//4.

If 2^a=3^b=6^(-c) , then prove that (1)/(a)+(1)/(b)+(1)/(c )=0 .

If log(a+b+c) = log a + log b + log c , then prove that log ((2a)/(1-a^(2))+(2b)/(1-b^(2))+(2c)/(1-c^(2))) = log(2a)/(1-a^(2)) + log (2b)/(1-b^(2)) + log(2c)/(1-c^(2)) .

If tantheta and sectheta are the roots of a x^2+b x+c=0, then prove that a^4=b^2(b^2-4ac)dot

If C is the center and A ,B are two points on the conic 4x^2+9y^2-8x-36 y+4=0 such that /_A C B=pi/2, then prove that 1/(C A^2)+1/(C B^2)=(13)/(36)dot

If A+B+C=pi, prove that tan^2(A/2)+tan^2(B/2)+tan^2(C/2)geq1.

Without expanding the determinant, prove that {:|( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) |:} ={:|( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) |:}

if P is the length of perpendicular from origin to the line x/a+y/b=1 then prove that 1/(a^2)+1/(b^2)=1/(p^2)

CENGAGE PUBLICATION-SEQUENCES AND SERIES-All Questions
  1. Prove that the greatest value of x y is c^3/sqrt(2a b), if a^2x^4+b^2y...

    Text Solution

    |

  2. If y = sin^-1(10x) + pi/2 then find the value of dy/dx .

    Text Solution

    |

  3. If a+b=1,a >0, prove that (a+1/a)^2+(b+1/b)^2geq(25)/2dot

    Text Solution

    |

  4. If x and y are positive real numbers and m, n are any positive integ...

    Text Solution

    |

  5. The least value of the expression 2(log)(10)x-(log)x(0. 01),forx >1, i...

    Text Solution

    |

  6. If a,b,c are positive real no., then prove that [(1+a)(1+b)(1+c)]^7 g...

    Text Solution

    |

  7. True / False For every intger n >1 , the inequality (n !)^(1//n)<(n+1)...

    Text Solution

    |

  8. If x ,y in R^+ satisfying x+y=3, then the maximum value of x^2y is.

    Text Solution

    |

  9. For anyx ,y , in R^+,x y >0 . Then the minimum value of (2x)/(y^3)+(x...

    Text Solution

    |

  10. If a ,b ,a n dc are positive and 9a+3b+c=90 , then the maximum value o...

    Text Solution

    |

  11. Given that x ,y ,z are positive real such that x y z=32. If the minimu...

    Text Solution

    |

  12. If the product of n positive numbers is n^n , then their sum is (a)...

    Text Solution

    |

  13. If a,b,c are different positive real numbers such that b+c−a,c+a−b and...

    Text Solution

    |

  14. Find the greatest value of x^2 y^3, where x and y lie in the first qua...

    Text Solution

    |

  15. Find the maximum value of (7−x)^4 (2+x)^5 when x lies between −2 and ...

    Text Solution

    |

  16. If a1, a2,...... ,an >0, then prove that (a1)/(a2)+(a2)/(a3)+(a3)/(a4...

    Text Solution

    |

  17. If a > b and n is a positive integer, then prove that a^n-b^n > n(a b)...

    Text Solution

    |

  18. If a ,b ,a n dc are positive and a+b+c=6, show that (a+1//b)^2+(b+1/...

    Text Solution

    |

  19. Prove that [(x^2+y^2+z^2)/(x+y+z)]^(x+y+z)> x^x y^y z^z >[(x+y+z)/3]^(...

    Text Solution

    |

  20. Prove that 1^1xx2^2xx3^3xxxxn^nlt=[(2n+1)/3]^(n(n+1)/2),n in Ndot

    Text Solution

    |