Home
Class 11
MATHS
f(n)(x)=e^(f(n-1)(x))" for all "n in N a...

`f_(n)(x)=e^(f_(n-1)(x))" for all "n in N and f_(0)(x)=x," then "(d)/(dx){f_(n)(x)}` is

Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Multiple correct answers type|11 Videos
  • LINEAR INEQUALITIES

    CENGAGE PUBLICATION|Exercise All Questions|68 Videos

Similar Questions

Explore conceptually related problems

Let f_1(x)=e^x,f_2(x)=e^(f_1(x)),"........",f_(n+1)(x)=e^(f_n(x)) for all nge1 . Then for any fixed n,(d)/(dx)f_n(x) is

If f(x) = logx, then d/(dx)f(logx) =

f(x)=e^(-1/x),w h e r ex >0, Let for each positive integer n ,P_n be the polynomial such that (d^nf(x))/(dx^n)=P_n(1/x)e^(-1/x) for all x > 0. Show that P_(n+1)(x)=x^2[P_n(x)-d/(dx)P_n(x)]

The value of (d)/(dx)5^(f(x)) is -

Statement 1: If differentiable function f(x) satisfies the relation f(x)+f(x-2)=0AAx in R , and if (d/(dx)f(x))_(x=a)=b ,t h e n(d/(dx)f(x))_(x=a+4000)=b . Statement 2: f(x) is a periodic function with period 4. (a) Statement 1 and Statement 2, both are correct. Statement 2 is the correct explanation for Statement 1 (b) Statement 1 and Statement 2, both are correct. Statement 2 is not the correct explanation for Statement 1 (c) Statement 1 is correct but Statement 2 is not correct. (d) Both Statement 1 and Statement 2 are not correct.

If f (x) = tan ^(-1) ((cos x- sinx)/(cos x+ sin x)) then the value of (d)/(dx) f(x) is-

If f(x) is a function satisfying f(x+y)=f(x)f(y) for all x,y in N such that f(1) =3 and sum_(x=1)^nf(x)=120 , then the value of n is

If f is a function satisfying f (x +y) = f(x) f(y) for all x, y in N such that f(1) = 3 and sum _(x=1)^nf(x)=120 , find the value of n.

Let f(x)=(3)/(4)x+1,f^(n)(x) be defined as f^(2)(x)=f(f(x)), and for n ge 2, f^(n+1)(x)=f(f^(n)(x))." If " lambda =underset (n to oo)(lim)f^(n)(x), then show that λ is independant of x.

Let f(x)=x+f(x-1) for AAx in R . If f(0)=1,f i n d \ f(100) .

CENGAGE PUBLICATION-LIMITS AND DERIVATIVES-All Questions
  1. Statement 1: For f(x)=sinx ,f^(prime)(pi)=f^(prime)(3pi) Statement 2...

    Text Solution

    |

  2. f:R^+ ->R is a continuous function satisfying f(x/y)=f(x)-f(y) AAx,y i...

    Text Solution

    |

  3. f(n)(x)=e^(f(n-1)(x))" for all "n in N and f(0)(x)=x," then "(d)/(dx){...

    Text Solution

    |

  4. Suppose f and g are functions having second derivative f'' and g' ' ev...

    Text Solution

    |

  5. If y=e^(-x)cosxa n dyn+kn y=0,w h e r eyn=(d^(n y))/(dx^n)a n dkn are ...

    Text Solution

    |

  6. If a function is represented parametrically be the equations x=(1+(lo...

    Text Solution

    |

  7. Prove (a + b + c) (ab + bc + ca) > 9abc

    Text Solution

    |

  8. Statement 1: f(x)=x+cosx is increasing AAx in Rdot Statement 2: If f...

    Text Solution

    |

  9. If y=a e^(m x)+b e^(-m x), then (d^2y)/(dx^2) is equals to

    Text Solution

    |

  10. If y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))]...

    Text Solution

    |

  11. If y=sqrt(logx+sqrt(logx+sqrt(logx+oo))),t h e n(dy)/(dx)i s (a)x/(...

    Text Solution

    |

  12. (d^n)/(dx^n)(logx)=? (a)((n-1)!)/(x^n) (b) (n !)/(x^n) (c)((n-2)!)/(...

    Text Solution

    |

  13. If y="sec"(tan^(-1)x),t h e n(dy)/(dx)a tx=1 is (a)cos(pi/4) (b) s...

    Text Solution

    |

  14. The differential coefficient of f((log)e x) with respect to x , where ...

    Text Solution

    |

  15. If u=f(x^3),v=g(x^2),f^(prime)(x)=cosx ,a n dg^(prime)(x)=sinx ,t h e ...

    Text Solution

    |

  16. If f^(prime)(x)=sqrt(2x^2-1) and y=f(x^2),t h e n(dy)/(dx) at x=1 is ...

    Text Solution

    |

  17. if f(x) = sqrt(1-sin2x), then f'(x) is equal to

    Text Solution

    |

  18. If x=tcost ,y=t+sint . Then (d^2 x)/(dy^2)at t=pi/2 is (a)(pi+4)/2...

    Text Solution

    |

  19. If x^3+3x^2-9x=c is of the form (x-alpha)^2(x-beta) , then c is equal ...

    Text Solution

    |

  20. If y=f(x) is an odd differentiable function defined on (-oo,oo) such t...

    Text Solution

    |