Home
Class 11
MATHS
Minimum value of (b+c)//a+(c+a)//b+(a+b)...

Minimum value of `(b+c)//a+(c+a)//b+(a+b)//c` (for real positive numbers `a ,b ,c)` is (a)`1` (b)`2` (c)`4` (d)`6`

Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|9 Videos
  • STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise All Questions|486 Videos

Similar Questions

Explore conceptually related problems

If a^(x)=b,b^(y)=c,c^(z)=a show that xyz =1 (a,b,c positive numbers)

If a ,b ,c in R^+ , then the minimum value of a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2) is equal to (a) a b c (b) 2a b c (c) 3a b c (d) 6a b c

For three unequal positive real numbers a, b, c show that (b + c) (c + a) (a + b) > 8abc.

If a,b,c are positive real number, then the least value of (a+b+c)(1/a+1/b+1/c) is

Given a matrix A=[(a,b,c), (b,c,a), (c,a,b)],where a ,b ,c are real positive numbers a b c=1a n dA^T A=I , then find the value of a^3+b^3+c^3dot

Given a matrix A=[a b c b c a c a b],w h e r ea ,b ,c are real positive numbers a b c=1a n dA^T A=I , then find the value of a^3+b^3+c^3dot

If a, b and c are three positive real numbers, show that a^2 + b^2 + c^2 ge ab + bc + ca

Prove that a^4+b^4+c^4>abc(a+b+c). [a,b,c are distinct positive real number]..

Let , a , b ,c ,d , p ,q ,r be positive real number such that a ,b , c are in G.P and a^(p)=b^(q)=c^(r) Then-

The minimum value of P=b c x+c a y+a b z , when x y z=a b c , is a. 3abc b. 6abc c. abc d. 4abc

CENGAGE PUBLICATION-SEQUENCES AND SERIES-All Questions
  1. If a b^2c^3, a^2b^3c^4,a^3b^4c^5 are in A.P. (a ,b ,c >0), then the mi...

    Text Solution

    |

  2. If the product of n positive numbers is n^n , then their sum is a posi...

    Text Solution

    |

  3. Minimum value of (b+c)//a+(c+a)//b+(a+b)//c (for real positive number...

    Text Solution

    |

  4. Prove that px^(q - r) + qx^(r - p) + rx^(p - q) gt p + q + r where p,...

    Text Solution

    |

  5. Given are positive rational numbers a ,b , c such that a+b+c=1, then p...

    Text Solution

    |

  6. Prove that [(a^2+b^2)/(a+b)]^(a+b)> a^a b^b >{(a+b)/2}^(a+b)dot

    Text Solution

    |

  7. Prove that a^p b^ q <((a p+b q)/(p+q))^(p+q)dot

    Text Solution

    |

  8. Let x1, x2, ,xn be positive real numbers and we define S=x1+x2++xndot...

    Text Solution

    |

  9. If 2x^3 + ax^2+bx+4 =0 (a and b are positive real numbers) has 3 real ...

    Text Solution

    |

  10. Find the greatest value of x^2y^3z^4 if x+y+z=1,w h e r ex ,y ,z are p...

    Text Solution

    |

  11. Prove that .^(n)C(1) + 2 xx .^(n)C(2) + 3 xx .^(n)C(3) + "…." + n xx ....

    Text Solution

    |

  12. If y=(x^4)/(x^8+8x^2) , then find the value of dy/dx

    Text Solution

    |

  13. If a , b ,c are three distinct positive real numbers in G.P., then pro...

    Text Solution

    |

  14. For xgeq0 , the smallest value of the function f(x)=(4x^2+8x+13)/(6(1...

    Text Solution

    |

  15. If the first and the (2n-1)^th term of an A.P,G.P anf H.P are equal an...

    Text Solution

    |

  16. For positive real numbers a ,bc such that a+b+c=p , which one holds?...

    Text Solution

    |

  17. If x ,y ,z are positive numbers is AdotPdot,t h e n (a)y^2geqx z ...

    Text Solution

    |

  18. Find int 1/((1-x^2)sqrt(1+x^2))dx

    Text Solution

    |

  19. If a >0, then least value of (a^3+a^2+a+1)^2 is (a)64 a^2 (b)16 a^4 ...

    Text Solution

    |

  20. The minimum value of |z-1|+|z-3| is

    Text Solution

    |