Home
Class 12
MATHS
Let g(x)=f(x)+f(1-x) and f''(x)>0AAx in ...

Let `g(x)=f(x)+f(1-x)` and `f''(x)>0AAx in (0,1)dot` Find the intervals of increase and of `g(x)dot`

Promotional Banner

Topper's Solved these Questions

  • 3D COORDINATION SYSTEM

    CENGAGE PUBLICATION|Exercise DPP 3.1|11 Videos
  • APPLICATION OF INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|143 Videos

Similar Questions

Explore conceptually related problems

Let g(x)=f(x)+f(1-x) and f''(x)>0AAx in (0,1)dot Find the intervals of decrease of g(x)dot

Let g(x)=f(x)+f(1-x) and f '' (x) gt 0 AA x in (0, 1) . Find the intervals of increase and decrease of g(x) -

Let g(x)=f(logx)+f(2-logx)a n df''(x)<0AAx in (0,3)dot Then find the interval in which g(x) increases.

Let g(x)=2f(x/2)+f(x) and f''(x)lt0 " in "0lexle1 , then g(x)

Let g(x)=2f(x/2)+f(2-x)a n df^('')(x)<0AAx in (0,2)dot Then g(x) increases in (a) (1/2,2) (b) (4/3,2) (c) (0,2) (d) (0,4/3)

Let f(x)=(x)/(1+|x|) Interval of increase of f(x) is -

If f(x)=0 and g(x)=f(x)sqrt(1-2(f(x))^2) are strictly increasing AAx in R , then find the values of f(x)dot

f(x)=e^x.g(x) , g(0)=2 and g'(0)=1 then f'(0)=

Let a function f(x) satisfies f(x)+f(2x)+f(2-x)+f(1+x)=x ,AAx in Rdot Then find the value of f(0)dot

Let g(x)=f(x)-1. If f(x)+f(1-x)=2AAx in R , then g(x) is symmetrical about. (a)The origin (b) the line x=1/2 (c) the point (1,0) (d) the point (1/2,0)

CENGAGE PUBLICATION-APPLICATION OF DERIVATIVES-All Questions
  1. Find the number of solutions of the equation 3tanx+x^3=2 when x in...

    Text Solution

    |

  2. If 3(a+2c)=4(b+3d), then the equation a x^3+b x^2+c x+d=0 will have a....

    Text Solution

    |

  3. Let g(x)=f(x)+f(1-x) and f''(x)>0AAx in (0,1)dot Find the intervals of...

    Text Solution

    |

  4. If f(x)=x^3+7x-1, then f(x) has a zero between x=0a n dx=1 . The theor...

    Text Solution

    |

  5. Show that tan^(-1)x > x/(1+(x^2)/3)ifx in (0,oo)dot

    Text Solution

    |

  6. Consider the function f(x)={xsinpi/x ,forx >0 ,forx=0 The number of ...

    Text Solution

    |

  7. For x > 0 lf x=pi/2, show that x-(x^3)/6 < sinx < x

    Text Solution

    |

  8. Let f(x) be a twice differentiable function for all real values of x a...

    Text Solution

    |

  9. Show that 0 < xsinx-1/2 sin^2x < ((pi-1))/2 ,AAx in (0,pi/2) dot

    Text Solution

    |

  10. The value of c in Lagranges theorem for the function f(x)=logsinx in t...

    Text Solution

    |

  11. Prove that ln(1+x) < x for x > 0.

    Text Solution

    |

  12. If the function f(x)=a x^3+b x^2+11 x-6 satisfies conditions of Rolles...

    Text Solution

    |

  13. Prove that |cosalpha-cosbeta|lt=|alpha-beta|

    Text Solution

    |

  14. A value of 'c' for which the conclusion of mean value theorem holds fo...

    Text Solution

    |

  15. If a , b > 0 a n d 0 < p < 1, then prove that (a+b)^p < a^p+b^pdot

    Text Solution

    |

  16. Each question has four choices, a,b,c and d, out of which only one is ...

    Text Solution

    |

  17. Let fa n dg be differentiable on R and suppose f(0)=g(0)a n df^(prime)...

    Text Solution

    |

  18. The abscissa of the point on the curve sqrt(x y)=a+x the tangent at wh...

    Text Solution

    |

  19. For 0ltxltpi/ 2, prove that cos(sinx)gtsin(cosx)

    Text Solution

    |

  20. In which of the following functions is Rolles theorem applicable? (a)f...

    Text Solution

    |