Home
Class 12
MATHS
The abscissas of point Pa n dQ on the cu...

The abscissas of point `Pa n dQ` on the curve `y=e^x+e^(-x)` such that tangents at `Pa n dQ` make `60^0` with the x-axis are. `(a)1n((sqrt(3)+sqrt(7))/7)a n d1n((sqrt(3)+sqrt(5))/2)` `(b)1n((sqrt(3)+sqrt(7))/2)` `(c)1n((sqrt(7)-sqrt(3))/2)` `(d)+-1n((sqrt(3)+sqrt(7))/2)`

Promotional Banner

Topper's Solved these Questions

  • 3D COORDINATION SYSTEM

    CENGAGE PUBLICATION|Exercise DPP 3.1|11 Videos
  • APPLICATION OF INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|143 Videos

Similar Questions

Explore conceptually related problems

Points on the curve f(x)=x/(1-x^2) where the tangent is inclined at an angle of pi/4 to the x-axis are (0,0) (b) (sqrt(3),-(sqrt(3))/2) (-2,2/3) (d) (-sqrt(3),(sqrt(3))/2)

Which of the following is equal to root(3)(-1) a. (sqrt(3)+sqrt(-1))/2 b. (-sqrt(3)+sqrt(-1))/(sqrt(-4)) c. (sqrt(3)-sqrt(-1))/(sqrt(-4)) d. -sqrt(-1)

int (dx)/(sqrt(1+sqrt(x)))=(4)/(3)(sqrt(x)-2)sqrt(1+sqrt(x))+c

If x= (2sqrt(10))/7 find the value of (sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x))

Tangent of acute angle between the curves y=|x^2-1| and y=sqrt(7-x^2) at their points of intersection is (a) (5sqrt(3))/2 (b) (3sqrt(5))/2 (5sqrt(3))/4 (d) (3sqrt(5))/4

(3sqrt7)/(sqrt5 + sqrt2) - (5sqrt5)/(sqrt2 + sqrt7) + (2sqrt2)/(sqrt7 + sqrt5) equals____

Simplify: 1/sqrt(11-2sqrt(30))-3/(sqrt7-2sqrt(10))-4/(sqrt(8+4sqrt3))

d/(dx)[tan^(-1)((sqrt(x)(3-x))/(1-3x))] is (a) 1/(2(1+x)sqrt(x)) (b) 3/((1+x)sqrt(x)) (c) 2/((1+x)sqrt(x)) (d) 3/(2(1+x)sqrt(x))

Prove that (a) sqrt(-sqrt3 + sqrt(3 + 8 sqrt(7 + 4 sqrt3))) =2 (b) sqrt(2- sqrt5 + sqrt(-15 + 4 sqrt(41 + 12 sqrt5))) =2

CENGAGE PUBLICATION-APPLICATION OF DERIVATIVES-All Questions
  1. If x+4y=14 is a normal to the curve y^2=ax^3 -betaat (2,3) then value ...

    Text Solution

    |

  2. In the curve represented parametrically by the equations x=2logcott+1 ...

    Text Solution

    |

  3. The abscissas of point Pa n dQ on the curve y=e^x+e^(-x) such that tan...

    Text Solution

    |

  4. The normal to the curve 2x^2+y^2=12 at the point (2,2) cuts the curve ...

    Text Solution

    |

  5. At what point of curve y=2/3x^3+1/2x^2, the tangent makes equal angle ...

    Text Solution

    |

  6. The equation of the tangent to the curve y=b e^(-x//a) at the point wh...

    Text Solution

    |

  7. Then angle of intersection of the normal at the point (-5/(sqrt(2)),3/...

    Text Solution

    |

  8. If a variable tangent to the curve x^2y=c^3 makes intercepts a , b o...

    Text Solution

    |

  9. Let C be the curve y=x^3 (where x takes all real values). The tangent ...

    Text Solution

    |

  10. If H is the number of horizontal tangents and V is the number of verti...

    Text Solution

    |

  11. Let f be differentiable for all x , If f(1)=-2a n df^(prime)(x)geq2 fo...

    Text Solution

    |

  12. The curves 4x^2+9y^2=72 and x^2-y^2=5a t(3,2) Then (a) touch each oth...

    Text Solution

    |

  13. If the length of sub-normal is equal to the length of sub-tangent at ...

    Text Solution

    |

  14. At any point on the curve 2x^2y^2-x^4=c , the mean proportional betwee...

    Text Solution

    |

  15. The x-intercept of the tangent at any arbitrary point of the curve a/(...

    Text Solution

    |

  16. A curve is represented by the equations x=sec^2ta n dy=cott , where t ...

    Text Solution

    |

  17. The two curves x=y^2,x y=a^3 cut orthogonally at a point. Then a^2 is ...

    Text Solution

    |

  18. The line tangent to the curves y^3-x^2y+5y-2x=0 and x^2-x^3y^2+5x+2y=0...

    Text Solution

    |

  19. Tangent of acute angle between the curves y=|x^2-1| and y=sqrt(7-x^2) ...

    Text Solution

    |

  20. The number of point in the rectangle {(x , y)}-12lt=xlt=12a n d-3lt=yl...

    Text Solution

    |