Home
Class 12
MATHS
If P(1)=0a n d(d P(x))/(dx)gtP(x), for a...

If `P(1)=0a n d(d P(x))/(dx)gtP(x)`, for all ` xge1`. Prove that `P(x)>0` for all `x>1.`

Promotional Banner

Topper's Solved these Questions

  • 3D COORDINATION SYSTEM

    CENGAGE PUBLICATION|Exercise DPP 3.1|11 Videos
  • APPLICATION OF INTEGRALS

    CENGAGE PUBLICATION|Exercise All Questions|143 Videos

Similar Questions

Explore conceptually related problems

If x gt 0 , prove that, x gt log (1+x) gt x/(1+x)

If f(a-x)=f(a+x) " and " f(b-x)=f(b+x) for all real x, where a, b (a gt b gt 0) are constants, then prove that f(x) is a periodic function.

If f(a-x)=f(a+x) " and " f(b-x)=f(b+x) for all real x, where a, b (a gt b gt 0) are constants, then prove that f(x) is a periodic function.

f(x)=e^(-1/x),w h e r ex >0, Let for each positive integer n ,P_n be the polynomial such that (d^nf(x))/(dx^n)=P_n(1/x)e^(-1/x) for all x > 0. Show that P_(n+1)(x)=x^2[P_n(x)-d/(dx)P_n(x)]

If x gt 0 , show that, x gt log (x^(2)+1)

Prove that , int a^(x) dx = (a^(x))/(log_(e)a)+ c , where a gt 0 . Does the formula hold for a = 1 ?

Prove that (1+x)^(n) ge (1+nx) for all natural number n where x gt -1

Let f be a real-valued function defined on interval (0,oo) ,by f(x)=lnx+int_0^xsqrt(1+sint).dt . Then which of the following statement(s) is (are) true? (A). f"(x) exists for all in (0,oo) . " " (B). f'(x) exists for all x in (0,oo) and f' is continuous on (0,oo) , but not differentiable on (0,oo) . " " (C). there exists alpha>1 such that |f'(x)|<|f(x)| for all x in (alpha,oo) . " " (D). there exists beta>1 such that |f(x)|+|f'(x)|<=beta for all x in (0,oo) .

Solve (x-1 )(x-2)(1-2x) gt 0

If f(x)="max" (x,(1)/(x))" for " x gt 0 , where max (p,q) denotes the greater of p and q, find the value of f(a)f((1)/(a)) , wheres a gt 0

CENGAGE PUBLICATION-APPLICATION OF DERIVATIVES-All Questions
  1. It is given that equation 4x^3-3x-p=0 has a unique root in the interva...

    Text Solution

    |

  2. Using the relation 2(1−cosx)<x^2 ,x=0 or prove that sin(tanx)≥x,∀ϵ[0,...

    Text Solution

    |

  3. If P(1)=0a n d(d P(x))/(dx)gtP(x), for all xge1. Prove that P(x)&gt;0...

    Text Solution

    |

  4. If p(x) is a polynomial of degree 3 satisfying p(-1)=10 , p(1) =-6 a...

    Text Solution

    |

  5. The larger of cos[log(theta)] and log(costheta) if e^(-pi/2) < theta <...

    Text Solution

    |

  6. The function y=2x^2-log(x) is monotonically increasing for values of x...

    Text Solution

    |

  7. The volume of the greatest cylinder which can be inscribed in a cone o...

    Text Solution

    |

  8. Use the function f(x)=x^(1//x),xgt0 to determine the bigger of the two...

    Text Solution

    |

  9. For all x in (0,1) (a) e^x<1+x (b) (log)e (1+x) < x (c) sin x > x ...

    Text Solution

    |

  10. Let A(p^2,-p),B(q^2, q),C(r^2,-r) be the vertices of triangle ABC. A p...

    Text Solution

    |

  11. If the function f(x)=(Ksinx+2cosx)/(sinx+cosx) is strictly increasing ...

    Text Solution

    |

  12. Let f: R->R be a function such that f(x)=a x+3sinx+4cosxdot Then f(x...

    Text Solution

    |

  13. Let f(x),xgeq0, be a non-negative continuous function. If f^(prime)(x)...

    Text Solution

    |

  14. If f(x)=k x^3-9x^2+9x+3 monotonically increasing in R , then (a)k<3...

    Text Solution

    |

  15. Let f: \mathbb{R} rarr \mathbb{R} be a twice differentiable function s...

    Text Solution

    |

  16. Show that 5xlt=8sinx-sin2xlt=6x for 0lt=xlt=pi/3dot

    Text Solution

    |

  17. Discuss the number of roots of the equation e(k-xlogx)=1 for different...

    Text Solution

    |

  18. Prove that sin1>cos(sin1)dot Also, show that the equation sin("cos"(si...

    Text Solution

    |

  19. Pa n dQ are two points on a circle of centre C and radius alpha . The ...

    Text Solution

    |

  20. If f(x)=2/(sqrt(3))tan^(-1)((2x+1)/(sqrt(3)))-log(x^2+x+1)+(lambda^2-5...

    Text Solution

    |