Home
Class 12
MATHS
For two unimodular complex number z1a n ...

For two unimodular complex number `z_1a n dz_2` `[[barz_1, -z_2], [barz_2, z_1]]^(-1)` `[[(z_1, z_2], [-barz_2, barz_1]]^(-1)` is equal to `[(z_1, z_2), (z_1bar, z_2bar)]^` b. `[1 0 0 1]` c. `[1//2 0 0 1//2]` d. none of these

Promotional Banner

Topper's Solved these Questions

  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

For two unimobular complex numbers z_(1) and z_(2) , find [(bar(z)_(1),-z_(2)),(bar(z)_(2),z_(1))]^(-1) [(z_(1),z_(2)),(-bar(z)_(2),bar(z)_(1))]^(-1)

For any two complex numbers z_1 and z_2 , , prove that Re (z_1 z_2) = Re z_1 Re z_2 – Imz_1 Imz_2

If |z_1/z_2|=1 and arg (z_1z_2)=0 , then a. z_1 = z_2 b. |z_2|^2 = z_1*z_2 c. z_1*z_2 = 1 d. none of these

If z_1,z_2 are two non zero complex numbers such that z_1/z_2+z_2/z_1=1 then z_1,z_2 and the origin are

If z_(1)+z_(2) are two complex number and |(barz_(1)-2bar z_(2))/(2-z_(1)barz_(2))|=1, |z_(1)| ne , then show that |z_(1)|=2 .

If z_1=1-3i,z_2=1+i , then find barz_1.barz_2

Let z_1 and z_2 are two complex nos s.t. abs(z_1) =abs(z_2)=1 then abs((z_1-z_2)/(1-z_1 barz_2)) is equal to

Modulus of non zero complex number z satisfying barz +z=0 and |z|^2-4z i=z^2 is _________.

If z_1=1-i,z_2=2+i , then find barz_1.barz_2

If z_1 and z_2 be two non-zero complex numbers such that |z_1+z_2|=|z_1|+|z_2| ,then prove that argz_1-argz_2=0 .

CENGAGE PUBLICATION-MATRICES-All Questions
  1. Let A be the set of all 3xx3 skew-symmetri matrices whose entries are ...

    Text Solution

    |

  2. If A=[[0, 1,2],[1,2,3],[3,a,1]]and A^(-1)[[1//2,-1//2,1//2],[-4,3,b],[...

    Text Solution

    |

  3. For two unimodular complex number z1a n dz2 [[barz1, -z2], [barz2, z1...

    Text Solution

    |

  4. If Aa n dB are two non-singular matrices of the same order such that B...

    Text Solution

    |

  5. If A is non-diagonal involuntary matrix, then a. A-I=O b. A+I=O c. A-...

    Text Solution

    |

  6. if A and B are squares matrices such that A^(2006)=O and A B=A+B , the...

    Text Solution

    |

  7. If matrix A is given by A=|[6, 11], [2, 4]| , then the determinant o...

    Text Solution

    |

  8. If A=[(a, b, c), (x, y, z), (p, q, r)], B=[(q,-b, y),(-p, a,-x),(r,-c,...

    Text Solution

    |

  9. If A and B are two non-singular matrices such that A B=C ,t h e n,|B| ...

    Text Solution

    |

  10. If A(alpha,beta)=[cosalphas inalpha0-s inalphacosalpha0 0 0e^(beta)],t...

    Text Solution

    |

  11. If A=[[a+i b, c+i d],[-c+i d, a-i b]] and a^2+b^2+c^2+d^2=1,t h e n ...

    Text Solution

    |

  12. Statement 1: A=[(4,0,4),(2,2,2), (1,2,1)] B^(-1)=[(1,3,3),(1,4,3),(1,3...

    Text Solution

    |

  13. If f(alpha)=[[cosalpha,-sinalpha,0],[sinalpha,cosalpha,0],[ 0, 0, 1]],...

    Text Solution

    |

  14. Statement 1: if a ,b ,c ,d are real numbers and A=[a b c d]a n dA^3=O ...

    Text Solution

    |

  15. A 3xx3 matrix given as, a(i j)=(i-j)/(i+2j) cannot be expressed as a s...

    Text Solution

    |

  16. Statement 1: If A ,B ,C are matrices such that |A(3xx3)|=3,|B(3xx3)|=-...

    Text Solution

    |

  17. Statement 1: For a singular square matrix A ,A B=A C B=Cdot Statemen...

    Text Solution

    |

  18. Statement 1: The inverse of singular matrix A=([a(i j)])(nxxn), \ w h ...

    Text Solution

    |

  19. Show that : The determinant of a matrix A=([a(i j)])(5xx5) where a(i j...

    Text Solution

    |

  20. If A=[1 2 2 1]a n df(x)=(1+x)/(1-x),t h e nf(A) is [1 1 1 1] b. [2 2 ...

    Text Solution

    |