Home
Class 12
MATHS
Statement 1: The inverse of singular mat...

Statement 1: The inverse of singular matrix `A=([a_(i j)])_(nxxn), \ w h e r e \ a_(i j)=0,igeqj \ i s \ B=([a i j^-1])_(nxxn)`.
Statement 2: The inverse of singular square matrix does not exist.

Promotional Banner

Topper's Solved these Questions

  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

Show that : The determinant of a matrix A=([a_(i j)])_(5xx5) where a_(i j)+a_(j i)=0 for all i and j is zero.

If A^(2)-A+I=0 then the inverse of the matrix A is

If A=([a_(i j)])_(nxxn) is such that ( a )_(i j)=bar (a_(j i)),AAi ,j and A^2=O , then Statement 1: Matrix A null matrix. Statement 2: |A|=0.

construct 2xx2 matrix if A=[a_(ij)] whose elements a_(ij) are given by : (i-j)^2/2

Statement 1: For a singular square matrix A ,A B=A C B=Cdot Statement 2; |A|=0,t h e nA^(-1) does not exist.

If A = [a_(ij)] is a 2 xx2 matrix such that a_(ij)=i+2j , then A will be

Let p be a non singular matrix, and I + P + p^2 + ... + p^n = 0, then find p^-1 .

If A=[a_(ij)] is a 2xx2 matrix such that a_(ij)=i+2j then A will be___

Let A=[a_(ij)]_(m×n) is defined by a_(ij)=i+j . Then the sum of all the elements of the matrix is

If A=[a_(ij)] is a 3xx2 matrix whose elements are given by a_(ij)=3i-2j , then A will be__

CENGAGE PUBLICATION-MATRICES-All Questions
  1. Statement 1: If A ,B ,C are matrices such that |A(3xx3)|=3,|B(3xx3)|=-...

    Text Solution

    |

  2. Statement 1: For a singular square matrix A ,A B=A C B=Cdot Statemen...

    Text Solution

    |

  3. Statement 1: The inverse of singular matrix A=([a(i j)])(nxxn), \ w h ...

    Text Solution

    |

  4. Show that : The determinant of a matrix A=([a(i j)])(5xx5) where a(i j...

    Text Solution

    |

  5. If A=[1 2 2 1]a n df(x)=(1+x)/(1-x),t h e nf(A) is [1 1 1 1] b. [2 2 ...

    Text Solution

    |

  6. Id [(1/25, 0), (x,1/25)]=[(5, 0), (-a, 5)]^(-2) , then the value of x ...

    Text Solution

    |

  7. If A=|[1,tanx],[-tanx,1]| , show that A^T\ A^(-1)=|[cos2x,-sin2x],[sin...

    Text Solution

    |

  8. If A is a square matrix of order n such that |a d j(a d jA)|=|A|^9, th...

    Text Solution

    |

  9. If A is order 3 square matrix such that |A|=2, then |(adj(adj(adjA)))|...

    Text Solution

    |

  10. If A^3=O ,t h e nI+A+A^2 equals a.I-A b. (I+A^1)^(-1) c. (I-A)^(-1) d...

    Text Solution

    |

  11. Evaluate int (1)/((x+1)sqrt(x-2))dx.

    Text Solution

    |

  12. (-A)^(-1) is always equal to (where A is nth-order square matrix) a. (...

    Text Solution

    |

  13. The matrix X for which [[1,-4],[ 3,-2]]X=[[-16-,6],[ 7 ,2]] is a.[[-2,...

    Text Solution

    |

  14. If A=[(0,-tan (alpha/2)),(tan (alpha/2),0)] and I is 2 xx 2 unit matri...

    Text Solution

    |

  15. Let A and B be 3xx3 matrtices of real numbers, where A is symmetric, "...

    Text Solution

    |

  16. If [[a, b],[ c,1-a]] is an idempotent matrix and f(x)=x-x^2 , bc=1/4 ...

    Text Solution

    |

  17. Let x be the solution set of equation A^x=I ,where A+[(0, 1,-1),(4,-3,...

    Text Solution

    |

  18. If A=[[alpha,0],[ 1, 1]] and B=[[1, 0],[ 5, 1]], find the values of al...

    Text Solution

    |

  19. Let a and b be two real numbers such that a > 1, b >1. If A=((a,0),(0,...

    Text Solution

    |

  20. Let f(x)=(1+x)/(1-x) . If A is matrix for which A^3=0,then f(A) is (a)...

    Text Solution

    |