Home
Class 12
MATHS
A=[[0 ,1],[ 3 ,0]]a n d(A^8+A^6+A^4+A^2+...

`A=[[0 ,1],[ 3 ,0]]a n d(A^8+A^6+A^4+A^2+I) V=[[0] ,[11]](w h e r e I i s` the `2xx2` identity matrix`),` then the product of all elements of matrix `V` is _____.

Promotional Banner

Topper's Solved these Questions

  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

If A^(2)-A+I=0 then the inverse of the matrix A is

Let S be the set which contains all possible values of l ,m ,n ,p ,q ,r for which A=[[l^2-3,p,0],[0,m^2-8,q],[r,0,n^2-15]] be non-singular idempotent matrix. Then the sum of all the elements of the set S is ________.

A square matrix P satisfies P^(2)=I-P , where I is identity matrix. If P^(n)=5I-8P , then n is :

Let A=[(0,1),(0,0)] , show that (aI+bA)^(n)=a^(n)I+na^(n-1)bA , where I is the identity matrix of order 2 and n in N .

If A is an idempotent matrix satisfying, (I-0. 4 A)^(-1)=I-alphaA ,w h e r eI is the unit matrix of the name order as that of A , then th value of |9alpha| is equal to ________.

If A = [[1,x,-2],[2,2,4],[0,0,2]] and A^2+2I_3=3A Find x, here I_3 is the unit matrix of order 3.

If [[2,-1],[1,0],[-3,4]]A=[[-1,-8,-10],[1,-2,-5],[9,22,15]] , then sum of all the elements of matrix A is

Show that the matrix A = {:[( 2,3),( 1,2) ]:} satisfies equation A^(2) -4A +I=0 where is 2xx2 identity matrix and O is 2xx2 Zero matrix. Using this equation, Find A^(-1)

Show that the matrix A=({:(2,-3),(3,4):}) satisfies the equation A^(2)-6A+17I=O and hence find A^(-1) where I is the identity matrix and O is the null matrix of order 2 times 2 .

If A=({:(2,-1),(-1,2):}) " and " A^(2)-4A+3I=0 where I is the unit matrix of order 2, then find A^(-1) .

CENGAGE PUBLICATION-MATRICES-All Questions
  1. Let A=[[1 ,2 ,3],[ 2, 0, 5],[ 0 ,2 ,1]] and B=[[0],[-3],[1]] . Which ...

    Text Solution

    |

  2. Column I, Column II If |A|=2,t h e n|2A^(-1)=(w h e r eA is of orde...

    Text Solution

    |

  3. A=[[0 ,1],[ 3 ,0]]a n d(A^8+A^6+A^4+A^2+I) V=[[0] ,[11]](w h e r e I i...

    Text Solution

    |

  4. Show that every square matrix A can be uniquely expressed as P+i Q ,wh...

    Text Solution

    |

  5. Express A as the sum of a Hermitian and a skew-Hermitian matrix, where...

    Text Solution

    |

  6. If A=([a(i j)])(nxxn) is such that ( a )(i j)=bar (a(j i)),AAi ,j and...

    Text Solution

    |

  7. Statement 1: If A is an orthogonal matrix of order 2, then |A|=+-1. ...

    Text Solution

    |

  8. Column I, Column II (I-A)^n is if A is idempotent, p. 2^(n-1)(l-...

    Text Solution

    |

  9. Evaluate P(AuuB) if 2P(A) = P(B) =5/13 and P(A/B) = 25

    Text Solution

    |

  10. Show that the solutions of the equation [(x,y),(z,t)]^2=0 are[(x,y),(...

    Text Solution

    |

  11. If A=[[-1, 1],[ 0,-2]] , then prove that A^2+3A+2I=Odot Hence, find ...

    Text Solution

    |

  12. If B ,C are square matrices of order na n difA=B+C ,B C=C B ,C^2=O , ...

    Text Solution

    |

  13. Statement 1: if D=diag[d1, d2, ,dn],then D^(-1)=diag[d1^(-1),d2^(-1),...

    Text Solution

    |

  14. If S is a real skew-symmetric matrix, then prove that I-S is non-si...

    Text Solution

    |

  15. If B and C are non-singular matrices and O is null matrix, then show t...

    Text Solution

    |

  16. Find the possible square roots of the two rowed unit matrix I.

    Text Solution

    |

  17. If A=\begin{bmatrix} 1 & 2 & 2\\ 2 & 1 & 2\\ 2 & 2 & 1 \end{bmatrix} ,...

    Text Solution

    |

  18. Let M be a 3xx3 matrix satisfying M[[0], [1] ,[0]]=[[-1], [2], [3]]...

    Text Solution

    |

  19. If A is unimodular, then which of the following is unimodular? a. -A ...

    Text Solution

    |

  20. Consider three matrices A=[(2,1),(4,1)], B=[(3,4),(2,3)] and C=[(3,-4)...

    Text Solution

    |