Home
Class 12
MATHS
If A=\begin{bmatrix} 1 & 2 & 2\\ 2 & 1 &...

If A=\begin{bmatrix} 1 & 2 & 2\\ 2 & 1 & 2\\ 2 & 2 & 1 \end{bmatrix} , then show that `A^2-4A-5I=O ,where I and 0` are the unit matrix and the null matrix of order 3, respectively. Use this result to find `A^(-1)dot`

Promotional Banner

Topper's Solved these Questions

  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE PUBLICATION|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

If A be a 2 times 2 matrix such that A^(2)=A , then show that (I-A)^(2)=I-A where I is the unit matrix of order 2 times 2 .

If for a matrix A, A= A^(-1) , then show that A(A^(3)+I)=A+I (I is the unit matrix).

If A = [(4,1),(7,2)] find a matrix B such that AB = I where I is the unit matrix of order 2.

If A = [[4,5],[5,6]] , show that A^2 = 10A + I where I is the unit matrix of order 2.

If A=((2,-1),(-1,2)) and I is the unit matrix of order 2, then A^(2) is equal to -

If A = [(2,2),(4,3)] show that, A A^(-1) =I_(2) wher I_(2) is the unit matrix of order 2.

If X={:[(1,-3,-4),(-1,3,4),(1,-3,-4)], show that, X^(2)=0 where 0 is the null matrix of order 3xx3.

If A = [[2,2],[4,3]] show that A A^(-1) = I_2 where I_2 is the unit matrix of order 2.

If A=([2,-1],[1,3]) then show that A^2-5A+7I_2=0 hence find A^(-1)

Show that the matrix A=({:(2,-3),(3,4):}) satisfies the equation A^(2)-6A+17I=O and hence find A^(-1) where I is the identity matrix and O is the null matrix of order 2 times 2 .

CENGAGE PUBLICATION-MATRICES-All Questions
  1. If B and C are non-singular matrices and O is null matrix, then show t...

    Text Solution

    |

  2. Find the possible square roots of the two rowed unit matrix I.

    Text Solution

    |

  3. If A=\begin{bmatrix} 1 & 2 & 2\\ 2 & 1 & 2\\ 2 & 2 & 1 \end{bmatrix} ,...

    Text Solution

    |

  4. Let M be a 3xx3 matrix satisfying M[[0], [1] ,[0]]=[[-1], [2], [3]]...

    Text Solution

    |

  5. If A is unimodular, then which of the following is unimodular? a. -A ...

    Text Solution

    |

  6. Consider three matrices A=[(2,1),(4,1)], B=[(3,4),(2,3)] and C=[(3,-4)...

    Text Solution

    |

  7. If A B=Aa n dB A=B , then which of the following is/are true? A is ide...

    Text Solution

    |

  8. If A=[[1,-1],[ 2, 1]],B=[[a,1],[b,-1]]a n d(A+B)^2=A^2+B^2+2A B ,t h e...

    Text Solution

    |

  9. Let Aa n dB be two nonsingular square matrices, A^T a n dB^T are the t...

    Text Solution

    |

  10. If A=1/3|[1, 2, 2], [2, 1,-2],[a,2,b]| is an orthogonal matrix, then ...

    Text Solution

    |

  11. If A is a matrix such that A^2+A+2I=Odot, the which of the following i...

    Text Solution

    |

  12. If A(theta)=[[sintheta, icostheta], [icostheta, sintheta]] , then whic...

    Text Solution

    |

  13. If |(1,-t a ntheta),(t a ntheta,1)| |(1,t a ntheta),(-t a ntheta,1)|^-...

    Text Solution

    |

  14. If A=[[3,-3, 4], [2,-3, 4], [0,-1, 1]] , then a. a d j(a d j A)=A b. |...

    Text Solution

    |

  15. If [[alpha, beta], [gamma, -alpha]] is to be square root of two-rowed ...

    Text Solution

    |

  16. If A=[a("ij")](4xx4), such that a("ij")={(2",","when "i=j),(0",","when...

    Text Solution

    |

  17. Statement 1: Let A ,B be two square matrices of the same order such th...

    Text Solution

    |

  18. If the matrices, A ,B ,(A+B) are non-singular, then prove that [A(A+B)...

    Text Solution

    |

  19. Let A and B be two 2xx2 matrices. Consider the statements (i) A B=0 ...

    Text Solution

    |

  20. The inverse of a skew-symmetric matrix of odd order a. is a symmetric...

    Text Solution

    |