Home
Class 11
MATHS
Let P be the family of parabolas y=x^2+p...

Let `P` be the family of parabolas `y=x^2+p x+q ,(q!=0),` whose graphs cut the axes at three points. The family of circles through these three points have a common point (a) (1, 0) (b) (0, 1) (c) (1, 1) (d) none of these

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|877 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

The differential equation of the family of circles passing through the fixed points (a, 0) and (-a, 0) is

The curve given by x+y=e^(x y) has a tangent parallel to the y-axis at the point (a) (0,1) (b) (1,0) (c) (1,1) (d) none of these

If A(1,p^2),B(0,1) and C(p ,0) are the coordinates of three points, then the value of p for which the area of triangle A B C is the minimum is (a) 1/(sqrt(3)) (b) -1/(sqrt(3)) (c) 1/(sqrt(2)) (d) none of these

The common chord of the circle x^2+y^2+6x+8y-7=0 and a circle passing through the origin and touching the line y=x always passes through the point. (a) (-1/2,1/2) (b) (1, 1) (c) (1/2,1/2) (d) none of these

If a/sqrt(b c)-2=sqrt(b/c)+sqrt(c/b), where a , b , c >0, then the family of lines sqrt(a)x+sqrt(b)y+sqrt(c)=0 passes though the fixed point given by (a) (1,1) (b) (1,-2) (c) (-1,2) (d) (-1,1)

If a , b and c are in A P , then the straight line a x+b y+c=0 will always pass through a fixed point whose coordinates are (a) (1,2) (b) (1,-2) (c) (2,3) (d) (0,0)

The circle x^2+y^2=5 meets the parabola y^2=4x at P and Q . Then the length P Q is equal to (a)2 (b) 2sqrt(2) (c) 4 (d) none of these

The straight lines x+2y-9=0,3x+5y-5=0 , and a x+b y-1=0 are concurrent, if the straight line 35 x-22 y+1=0 passes through the point (a) (a , b) (b) (b ,a) (c) (-a ,-b) (d) none of these

Let the parabolas y=x(c-x)and y=x^(2)+ax+b touch each other at the point (1,0), then-

If p >1 and q >1 are such that log(p+q)=logp+logq , then the value of log(p-1)+"log"(q-1) is equal to 0 (b) 1 (c) 2 (d) none of these

CENGAGE PUBLICATION-CONIC SECTIONS-All Questions
  1. Consider the parabola y^2=12 x Column I, Column II Equation of ta...

    Text Solution

    |

  2. If the tangent at the point P(2,4) to the parabola y^(2)=8x meets the ...

    Text Solution

    |

  3. Let P be the family of parabolas y=x^2+p x+q ,(q!=0), whose graphs cut...

    Text Solution

    |

  4. If normal at point P on the parabola y^2=4a x ,(a >0), meets it again ...

    Text Solution

    |

  5. If line P Q , where equation is y=2x+k , is a normal to the parabola w...

    Text Solution

    |

  6. The parabola y=x^2+p x+q cuts the straight line y=2x-3 at a point with...

    Text Solution

    |

  7. Tangent is drawn at any point (p ,q) on the parabola y^2=4a xdot Tange...

    Text Solution

    |

  8. The equation of the directrix of the parabola with vertex at the origi...

    Text Solution

    |

  9. Tangent is drawn at any point (x1, y1) other than the vertex on the pa...

    Text Solution

    |

  10. The angle between the tangents to the curve y=x^2-5x+6 at the point (2...

    Text Solution

    |

  11. Statement 1: If the parabola y^2=4a x and the circle x^2+y^2+2b x=0 to...

    Text Solution

    |

  12. If a line y=3x+1 cuts the parabola x^2-4x-4y+20=0 at A and B , then th...

    Text Solution

    |

  13. P(x , y) is a variable point on the parabola y^2=4a x and Q(x+c ,y+c) ...

    Text Solution

    |

  14. If a and c are the lengths of segments of any focal chord of the parab...

    Text Solution

    |

  15. AB is a chord the parabola y^(2)=4ax with vertex A. BC is drawn perpen...

    Text Solution

    |

  16. Set of value of alpha for which the point (alpha,1) lies inside the ci...

    Text Solution

    |

  17. If P is a point on the parabola y^(2)=3(2x-3) and M is the foot perpen...

    Text Solution

    |

  18. If y=m x+c touches the parabola y^2=4a(x+a), then (a)c=a/m (b) c=a m...

    Text Solution

    |

  19. The angle between the tangents to the paranola y^(2)=4ax at the points...

    Text Solution

    |

  20. The area of the triangle formed by the tangent and the normal to the ...

    Text Solution

    |