Home
Class 11
MATHS
Let P(a sectheta, btantheta) and Q(asec...

Let `P(a sectheta, btantheta) and Q(asecphi , btanphi)` (where `theta+phi=pi/2`) be two points on the hyperbola `x^2/a^2-y^2/b^2=1` If `(h, k)` is the point of intersection of the normals at `P and Q` then `k` is equal to
(A) `(a^2+b^2)/a` (B) `-((a^2+b^2)/a)` (C) `(a^2+b^2)/b` (D) `-((a^2+b^2)/b)`

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|877 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

Let P(a sec theta , b tan theta ) and Q(a sec phi , b tan phi) where theta + phi = (pi)/(2) be two point on the hyperbola (x^(2))/(a^(2)) - (y^(2))/(b^(2)) =1 .If ( h, k) be the point of intersection of the normals at P and Q , then the value of k is -

If (asectheta;btantheta) and (asecphi; btanphi) are the ends of the focal chord of x^2/a^2-y^2/b^2=1 then prove that tan(theta/2)tan(phi/2)=(1-e)/(1+e)

Let P(6,3) be a point on the hyperbola parabola x^2/a^2-y^2/b^2=1 If the normal at the point intersects the x-axis at (9,0), then the eccentricity of the hyperbola is

Let P(4,3) be a point on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 . If the normal at P intersects the x-axis at (16,0), then the eccentriclty of the hyperbola is

The slop of the normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 at the point ( a sec theta , b tan theta) is -

If two points P & Q on the hyperbola , x^2/a^2-y^2/b^2=1 whose centre is C be such that CP is perpendicularal to CQ and a lt b 1 ,then prove that 1/(CP^2)+1/(CQ^2)=1/a^2-1/b^2 .

If the chord joining the points (asectheta, btantheta) and (asecphi, btanphi) on the hyperbola x^2/a^2-y^2/b^2=1 passes through the focus (ae,0), prove that tan(theta/2)tan(phi/2)+(e-1)/(e+1)=0 .

From any point on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 , tangents are drawn to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=2. The area cut-off by the chord of contact on the asymptotes is equal to: (a) a/2 (b) a b (c) 2a b (d) 4a b

If D is the mid-point of the side B C of triangle A B C and A D is perpendicular to A C , then 3b^2=a^2-c ^2 (b) 3a^2=b^2 3c^2 b^2=a^2-c^2 (d) a^2+b^2=5c^2

If the normal at any point P on the ellipse x^2/a^2+y^2/b^2=1 meets the axes at G and g respectively, then find the ratio PG:Pg . (a) a : b (b) a^2 : b^2 (c) b : a (d) b^2 : a^2

CENGAGE PUBLICATION-CONIC SECTIONS-All Questions
  1. From any point to the hyperbola x^2/a^2-y^2/b^2=1, tangents are drawn...

    Text Solution

    |

  2. The locus of the image of the focus of the ellipse (x^2)/(25)+(y^2)/9=...

    Text Solution

    |

  3. Let P(a sectheta, btantheta) and Q(asecphi , btanphi) (where theta+p...

    Text Solution

    |

  4. The line 2x + y = 1 is tangent to the hyperbola x^2/a^2-y^2/b^2=1. I...

    Text Solution

    |

  5. The equation 3x^2+4y^2-18x+16 y+43=k represents an empty set, if k<0 ...

    Text Solution

    |

  6. If a ray of light incident along the line 3x+(5-4sqrt2)y=15 gets refle...

    Text Solution

    |

  7. If the sum of the slopes of the normal from a point P to the hyperbola...

    Text Solution

    |

  8. A normal to the hyperbola (x^2)/4-(y^2)/1=1 has equal intercepts on th...

    Text Solution

    |

  9. The number of points on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 from w...

    Text Solution

    |

  10. If tangents P Qa n dP R are drawn from a variable point P to thehyperb...

    Text Solution

    |

  11. The locus of a point, from where the tangents to the rectangular hyp...

    Text Solution

    |

  12. The tangent at a point P on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(...

    Text Solution

    |

  13. Show that midpoint of focal chords of a hyperbola (x^(2))/(a^(2))-(y^(...

    Text Solution

    |

  14. The curve for which the length of the normal is equal to the length ...

    Text Solution

    |

  15. A tangent drawn to hyperbola x^2/a^2-y^2/b^2 = 1 at P(pi/6) froms a t...

    Text Solution

    |

  16. The equation of the transvers axis of the hyperbola (x-3)^2+(y+1)^2=(4...

    Text Solution

    |

  17. If a variable line has its intercepts on the coordinate axes e and e^(...

    Text Solution

    |

  18. The locus of the point which is such that the chord of contact of ta...

    Text Solution

    |

  19. The angle between the lines joining the origin to the points of inters...

    Text Solution

    |

  20. The equation of the chord joining two points (x(1),y(1)) and (x(2),y(2...

    Text Solution

    |