Home
Class 11
MATHS
Let C be a curve which is the locus of t...

Let `C` be a curve which is the locus of the point of intersection of lines `x=2+m` and `m y=4-mdot` A circle `s: (x-2)^2+(y+1)^2=25` intersects the curve `C` at four points: `P ,Q ,R ,a n dS` . If `O` is center of the curve `C ,` then `O P^2+O Q^2+O R^2+O S^2` is (a) `50` (b) `100` (c) `25` (d) `(25)/2`

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    CENGAGE PUBLICATION|Exercise All Questions|877 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Multiple correct answers type|11 Videos

Similar Questions

Explore conceptually related problems

Find the point(s) of intersection of the line 2x + 3y = 18 and the circle x^2 + y^2 = 25

Find the locus of the point of intersection of the perpendicular tangents of the curve y^2+4y-6x-2=0 .

If the circle x^2+y^2=a^2 intersects the hyperbola x y=c^2 at four points P(x_1, y_1),Q(x_2, y_2),R(x_3, y_3), and S(x_4, y_4), then

The number of points of intersection of two curves y=2sinxa n dy=5x^2+2x+3i s a. 0 b. 1 c. 2 d. oo

(x-1)(y-2)=5 and (x-1)^2+(y+2)^2=r^2 intersect at four points A, B, C, D and if centroid of triangle ABC lies on line y = 3x-4 , then locus of D is

The line x =2 y intersects the ellipse (x^(2))/(4) +y^(2) = 1 at the points P and Q . The equation of the circle with pq as diameter is _

P ,Q , and R are the feet of the normals drawn to a parabola (y-3)^2=8(x-2) . A circle cuts the above parabola at points P ,Q ,R ,a n dS . Then this circle always passes through the point.

Two perpendicular tangents drawn to the ellipse (x^2)/(25)+(y^2)/(16)=1 intersect on the curve.

If the straight line x - 2y + 1 = 0 intersects the circle x^2 + y^2 = 25 at points P and Q, then find the coordinates of the point of intersection of the tangents drawn at P and Q to the circle x^2 + y^2 = 25 .

The equation of the locus of the middle point of a chord of the circle x^2+y^2=2(x+y) such that the pair of lines joining the origin to the point of intersection of the chord and the circle are equally inclined to the x-axis is (a) x+y=2 (b) x-y=2 (c) 2x-y=1 (d) none of these

CENGAGE PUBLICATION-CONIC SECTIONS-All Questions
  1. Suppose the circle having equation x^(2)+y^(2)=3 intersects the rectan...

    Text Solution

    |

  2. Let two points P and Q lie on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b...

    Text Solution

    |

  3. Let C be a curve which is the locus of the point of intersection of li...

    Text Solution

    |

  4. The ellipse 4x^2+9y^2=36 and the hyperbola a^2x^2-y^2=4 intersect at r...

    Text Solution

    |

  5. The chord P Q of the rectangular hyperbola x y=a^2 meets the axis of x...

    Text Solution

    |

  6. The curve xy = C, (c gt 0), and the circle x^(2)+y^(2)=1 touch at two ...

    Text Solution

    |

  7. If S(1) and S(2) are the foci of the hyperbola whose length of the tra...

    Text Solution

    |

  8. The locus of the point which is such that the chord of contact of ta...

    Text Solution

    |

  9. The asymptote of the hyperbola x^2/a^2-y^2/b^2=1 form with an tangent ...

    Text Solution

    |

  10. The asymptotes of the hyperbola xy=hx+ky are

    Text Solution

    |

  11. The equation of a rectangular hyperbola whose asymptotes are x=3 and y...

    Text Solution

    |

  12. The centre of a rectangular hyperbola lies on the line y =2x. If one o...

    Text Solution

    |

  13. If the foci of a hyperbola lie on y=x and one of the asymptotes is y=2...

    Text Solution

    |

  14. Four points are such that the line joining any two points is perpendic...

    Text Solution

    |

  15. If tangents O Q and O R are dawn to variable circles having radius r a...

    Text Solution

    |

  16. The equation, 2x^2+ 3y^2-8x-18y+35= K represents (a) no locus if k g...

    Text Solution

    |

  17. Each question has four choices a,b,c and d out of which only one is...

    Text Solution

    |

  18. From the point (2, 2) tangent are drawn to the hyperbola (x^2)/(16)-(y...

    Text Solution

    |

  19. The differential equation (dx)/(dy)=(3y)/(2x) represents a family of h...

    Text Solution

    |

  20. If (5,12)a n d(24 ,7) are the foci of a hyperbola passing through the ...

    Text Solution

    |