Home
Class 11
MATHS
If an and bn are positive integers and a...

If `a_n` and `b_n` are positive integers and `a_n+sqrt(2)b_n=(2+sqrt(2))^n ,t h e n(lim)_(n->oo)((a_n)/(b_n))=` a. 2 b. `sqrt(2)` c. `e^(sqrt(2))` d. `e^2`

Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE PUBLICATION|Exercise Multiple correct answers type|11 Videos
  • LINEAR INEQUALITIES

    CENGAGE PUBLICATION|Exercise All Questions|68 Videos

Similar Questions

Explore conceptually related problems

If a_(n) and b_(n) are positive integers and a_(n)+sqrt2b_(n)=(2+sqrt2)^(n) , then lim_(nrarroo) ((a_(n))/(b_(n))) =

If n is a positive integer , then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is -

If m , n are positive integers and m+nsqrt(2)=sqrt(41+24sqrt(2)) , then (m+n) is equal to (a) 5 (b) 6 (c) 7 (d) 8

Let n be a positive integer such that sinpi/(2n)+cospi/(2n)=(sqrt(n))/2dot

If n is a possible integer, then (sqrt3+1)^(2n)-(sqrt3-1)^(2n) is

If x_1=3 and x_(n+1)=sqrt(2+x_n),ngeq1,t h e n""("lim")_(xrarroo)x_n is (a) -1 (b) 2 (c) sqrt(5) (d) 3

If n is a positive integer and U_(n) = (3 + sqrt5)^(n) + (3 - sqrt5)^(n) , then prove that U_(n + 1) = 6U_(n) - 4U_(n -1), n ge 2

lim_(nto oo)[(sqrt(n+1)+sqrt(n+2)+...+sqrt(2)n)/(sqrt(n^(3)))]

If n is positive integer and "cos" (pi)/(2n)+"sin" (pi)/(2n) =(sqrt(n))/(2) , then prove that 4 le n le 8

Let: a_n=int_0^(pi/2)(1-sint)^nsin2tdt Then find the value of lim_(n->oo)na_n

CENGAGE PUBLICATION-LIMITS AND DERIVATIVES-All Questions
  1. The value of lim(x->pi/4) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

    Text Solution

    |

  2. The value of (lim)(x->oo)(e^sqrt(x^(4+1))-e^(x^(2+1))) is (a) 0 b. e c...

    Text Solution

    |

  3. If an and bn are positive integers and an+sqrt(2)bn=(2+sqrt(2))^n ,t h...

    Text Solution

    |

  4. Iff(x)={x+1/2, x<0 2x+3/4,x >=0 , then [(lim)(x->0)f(x)]= (...

    Text Solution

    |

  5. (lim)(X-> (-7)([x]^2+15[x]+56)/("sin"(x+7)"sin"(x+8))= (where [.] deno...

    Text Solution

    |

  6. Let L1=(lim)(x^vec4)(x-6)^x and L2=(lim)(x^vec4)(x-6)^4dot Which of t...

    Text Solution

    |

  7. If f:R->R is defined by f(x)=[x−3]+|x−4| for x in R, then lim(x->3) f(...

    Text Solution

    |

  8. If [dot] denotes the greatest integer function, then (lim)(xvec0)x/a...

    Text Solution

    |

  9. underset(xrarr(-1)/(3))(lim)(1)/(x)[(-1)/(x)]= (where [.] denotes the ...

    Text Solution

    |

  10. (lim)(xvecoo)x^2sin((log)esqrt(cospi/x)) a. 0 b. (pi^2)/2 c. (pi^2...

    Text Solution

    |

  11. underset(xrarr0)(lim)(1)/(x^(2))|(1-cos3x,log(e)(1+4x)),(sin^(-1)(x^(x...

    Text Solution

    |

  12. If graph of the function y=f(x) is continuous and passes through point...

    Text Solution

    |

  13. lim(x->oo)[x-loge((e^x+e^(-x))/2)]= a)(log)e4 b. 0 c. oo d. (log)e...

    Text Solution

    |

  14. The value of lim(x->0)(1+sinx-cosx+"log"(1-x))/(x^3) is (a)1/2 ...

    Text Solution

    |

  15. If underset(xrarroo)(lim)((x+c)/(x-c))^(x)=4 then the value of e^(c) i...

    Text Solution

    |

  16. If f(x)=underset(nrarroo)(lim)((x^(2)+ax+1)+x^(2n)(2x^(2)+x+b))/(1+x^(...

    Text Solution

    |

  17. If lim(x->0)[1+x+(f(x))/x]^(1/x)=e^3, then find the value of 1n(lim(x-...

    Text Solution

    |

  18. Let f(x) be the fourth degree polynomial such that f^(prime)(0)-6,f(0)...

    Text Solution

    |

  19. Let f(x) be the fourth degree polynomial such that f^(prime)(0)-6,f(0)...

    Text Solution

    |

  20. (lim)(x->0)((sqrt(1+xsin x)-sqrt(cos2x))/(tan^2(x//2))) is equal to 1/...

    Text Solution

    |