Home
Class 12
MATHS
~((~(~p))^^q) is equal to...

`~((~(~p))^^q) ` is equal to

A

A. `~p^^q`

B

B. `~pvv~q`

C

C. `p^^~q`

D

D. `~p^^~q`

Text Solution

Verified by Experts

The correct Answer is:
B

`~((~(~p))^^q) -=~(p^^q)`
`-=~ pvv~q`
Promotional Banner

Topper's Solved these Questions

  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos
  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise concept application|13 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise JEE ADVANCED|1 Videos
  • MATRICES

    CENGAGE PUBLICATION|Exercise All Questions|509 Videos

Similar Questions

Explore conceptually related problems

The Boolean Expression (p^^~ q)vvqvv(~ p^^q) is equivalent to : (1) ~ p^^q (2) p^^q (3) pvvq (4) pvv~ q

If the sum of the coefficients in the expansion of (q+r)^(20)(1+(p-2)x)^(20) is equal to square of the sum of the coefficients in the expansion of [2rqx-(r+q)*y]^(10) , where p , r , q are positive constants, then

The Boolean expression ~(pvvq)vv(~p^^q) is equivalent to (1) ~p (2) p (3) q (4) ~q

(p^^~q)^^(~p^^q) is

If p >1 and q >1 are such that log(p+q)=logp+logq , then the value of log(p-1)+"log"(q-1) is equal to 0 (b) 1 (c) 2 (d) none of these

int (px^(p+2q-1)-qx^(q-1))/(x^(2p+2q)+2x^(p+q)+1) dx is equal to (1)    -x^p/(x^(p+q)+1)+C     (2)    x^q/(x^(p+q)+1)+C     (3)    -x^q/(x^(p+q)+1)+C     (4)    x^p/(x^(p+q)+1)+C    

For 0 le P, Q le (pi)/(2) , if sin P+cos Q=2 , then the value of tan((P+Q)/(2)) is equal to

If z=x-iy and z^(1/3)=p+iq then (x/p+y/q)/(p^2+q^2) is equal to

If p >1 and q >1 are such that log(p+q)=logp+logq , then the value of log(p-1)+log(q-1) is equal to

Let P and Q be 3xx3 matrices with P!=Q . If P^3=""Q^3a n d""P^2Q""=""Q^2P , then determinant of (P^2+""Q^2) is equal to (1) 2 (2) 1 (3) 0 (4) 1