Home
Class 12
MATHS
In a binomial distribution B(n , p=1/4) ...

In a binomial distribution `B(n , p=1/4)` , if the probability of at least one success is greater than or equal to `9/(10)` , then n is greater than (1) `1/((log)_(10)^4-(log)_(10)^3)`
(2) `1/((log)_(10)^4+(log)_(10)^3)`
(3) `9/((log)_(10)^4-(log)_(10)^3)`
(4) `4/((log)_(10)^4-(log)_(10)^3)`

A

`(1)/("log"_(10)4-"log"_(10)3)`

B

`(1)/("log"_(10)4+"log"_(10)3)`

C

`(9)/("log"_(10)4-"log"_(10)3)`

D

`(4)/("log"_(10)4-"log"_(10)3)`

Text Solution

Verified by Experts

The correct Answer is:
A

`1-q^(n) ge (9)/(10)`
`implies ((3)/(4))^(n) le (1)/(10)`
`implies n ge -"log"_(3//4)10`
`implies n ge (1)/("log"_(10)4-"log"_(10)3)`
Promotional Banner

Topper's Solved these Questions

  • STATISTICS

    CENGAGE PUBLICATION|Exercise Exercises|39 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos
  • STRAIGHT LINE

    CENGAGE PUBLICATION|Exercise Multiple Correct Answers Type|8 Videos

Similar Questions

Explore conceptually related problems

Solve : (iv) log_(10)x - log_(10)sqrt(x) = 2/(log_(10)x)

Solve : (iii) 4^(log_(9^3))+9^(log_(2^4))=10^(log_(x^83))

Solve : (1)/(log_(x)10)+2=(2)/(log_(0.5)(10))

Solve: (1/2)^(log^(10a^2))+2>3/(2^((log)_(10)(-a)))

Prove that 1/3<(log)_(10)3<1/2dot

Solve (x^(log_(10)3))^(2) - (3^(log_(10)x)) - 2 = 0 .

Prove that (2^((log)_2 1/4x)-3^((log)_(27)(x^2+1)^3)-2x) /(7^(4(log)_(49)x)-x-1)>0

The global maximum value of f(x)=(log)_(10)(4x^3-12 x^2+11 x-3),x in [2,3], is -3/2(log)_(10)3 (b) 1+(log)_(10)3 c) (log)_(10)3 (d) 3/2(log)_(10)3

Calculate : (iii) log_10(384/5)+log_(10)(81/32)+3log_(10)(5/3)+log_(10)(1/9)

The value of (log_(10)2)^3+log_(10)8log_(10)5+(log_(10)5)^3 is ............