Home
Class 12
MATHS
Let S and S' be the foci of the ellipse ...

Let S and S' be the foci of the ellipse and B be any one of the extremities of its minor axis. If `DeltaS'BS=8sq.` units, then the length of a latus rectum of the ellipse is

A

`2sqrt(2)`

B

`2`

C

`4`

D

`4sqrt(2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 7 (Hyperbola)|7 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Matching coluumn type|1 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 5 (Parabola)|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

The coordinates of the foci of an ellipse are (0,pm 4 ) and the equations of its directrices are y = pm 9 . Find the length of the latus rectum of the ellipse

S and T are the foci of an ellipse and B is the end point of the minor axis. If STB is equilateral triangle, the eccentricity of the ellipse is

Pa n dQ are the foci of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 and B is an end of the minor axis. If P B Q is an equilateral triangle, then the eccentricity of the ellipse is 1/(sqrt(2)) (b) 1/3 (d) 1/2 (d) (sqrt(3))/2

In each of the Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. (x^(2))/(4)+(y^(2))/(25)=1

In each of the Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. (x^(2))/(16)+(y^(2))/(9)=1

In each of the Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. (x^(2))/(49)+(y^(2))/(36)=1

In each of the Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. 36x^(2)+4y^(2)=144

In each of the Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. (x^(2))/(36)+(y^(2))/(16)=1

In each of the Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. (x^(2))/(25)+(y^(2))/(100)=1

In each of the Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. (x^(2))/(100)+(y^(2))/(400)=1