Home
Class 12
MATHS
Let S={(x,y) in R^(2):(y^(2))/(1+r)-(x^(...

Let `S={(x,y) in R^(2):(y^(2))/(1+r)-(x^(2))/(1-r)=1}`, where `r ne pm 1`. Then S represents:

A

A hyperbolawhose eccentricity is `(2)/(sqrt(r+1))`, where `0 lt r lt 1`.

B

An ellipse whose eccentricity is `(1)/(sqrt(r+1)), " where" r gt 1`

C

A hyperbola whose eccentricity is `(2)/(sqrt(1-r)), " where " 0 lt r lt 1`.

D

An ellipse whose eccentricity is `sqrt((2)/(r+1)), " where " r gt 1`.

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE PUBLICATION|Exercise Matching coluumn type|1 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Integer Answer type|2 Videos
  • JEE 2019

    CENGAGE PUBLICATION|Exercise Chapter 6 (Ellipse)|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise All Questions|541 Videos
  • LIMITS

    CENGAGE PUBLICATION|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

(x^(2))/(r^(2)-r-6) +(y^(2))/(r^(2) - 6r + 5) = 1 will represents an ellipse if r lies in the interval _

cos ((dy)/(dx)) = a (a ne R), y = 1 when x = 0

A relation S is defined on the set of real numbers R R a follows : S{(x,y) : x^(2) +y^(2)=1 for all x,y in R R } Check the relation S for (i) reflexivity (ii) symmetry an (iii) transitivity.

Solve: 2/(|x|-3)le1/2 where x in R and x ne pm 3 .

Let f={(x, x^2/(1+x^(2))), x in R} be a function from R into R. Determine the range of f.

Let x gt 0 , y gt 0 , z gt 0 are respectively the 2^(nd) , 3^(rd) , 4^(th) terms of a G.P. and Delta=|{:(x^(k),x^(k+1),x^(k+2)),(y^(k),y^(k+1),y^(k+2)),(z^(k),z^(k+1),z^(k+2)):}|=(r-1)^(2)(1-(1)/(r^(2))) (where r is the common ratio), then

If (1-x^2)^n=sum_(r=0)^na_rx^r(1-x)^(2n-r) , then a_r is equal to

If the tangent at point P(h, k) on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 cuts the circle x^(2)+y^(2)=a^(2) at points Q(x_(1),y_(1)) and R(x_(2),y_(2)) , then the vlaue of (1)/(y_(1))+(1)/(y_(2)) is

Let f:R to R be given by f(x) =|x^(2)-1|, x in R . Then

(x+3)/(x-1)le1/2,x ne1 and x in R