Home
Class 12
MATHS
Product of the perpendiculars from (alph...

Product of the perpendiculars from `(alpha, beta)` to the lines `ax^2+2hxy+by^2=0` is

Text Solution

Verified by Experts

Let the lines be `y=m_(1)xandy=m_(2)x`
or `m_(1)x-y=0andm_(2)x-y=0`
were `m_(1)+m_(2)=-(2h)/(b),m_(1)m_(2)=(a)/(b)`
Now , if the lengths of perpendicular from (0,0) on these lines are `d_(1)andd_(2)` respectively , then
`d_(1)d_(2)=(|m_(1)alpha-beta|)/(sqrt(m_(1)^(2)+1))(|m_(2)alpha-beta|)/(sqrt(m_(2)^(2)+1))`
`=(|m_(1)m_(2)alpha^(2)-(m_(1)+m_(2))alpha beta+beta^(2)|)/(sqrt(m_(1)^(2)m_(2)^(2)+m_(1)^(2)+m_(2)^(2)+1))`
`=(|m_(1)m_(2)alpha^(2)-(m_(1)+m_(2))alpha beta+beta^(2)|)/(sqrt(m_(1)^(2)m_(2)^(2)+(m_(1)+m_(2))^(2)-2m_(1)m_(2)+1))`
`(|(a)/(b)alpha^(2)+(2h)/(b)alpha beta+ beta^(2)|)/(sqrt(a^(2)/(b^(2))+(4h^(2))/(b^(2))-2(a)/(b)+1))`
`=(|aalpha+2halpha beta+b beta^(2)|)/(sqrt(a^(2)+4h^(2)-2ab+b^(2)))`
`=(|aalpha+2halpha beta+b beta^(2)|)/(sqrt((a-b)^(2)+4h^(2)))`
Promotional Banner

Topper's Solved these Questions

  • PAIR OF STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise Exercise 3.1|6 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise Exercise 3.2|7 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE PUBLICATION|Exercise Illustration 3.17|1 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE PUBLICATION|Exercise Comprehension Type|6 Videos
  • PARABOLA

    CENGAGE PUBLICATION|Exercise Matching Column Type|1 Videos

Similar Questions

Explore conceptually related problems

prove that the product of the perpendiculars drawn from the point (x_1, y_1) to the pair of straight lines ax^2+2hxy+by^2=0 is |(ax_1^2+2hx_1y_1+by_1^2)/sqrt((a-b)^2+4h^2)|

The lines y = mx bisects the angle between the lines ax^(2) +2hxy +by^(2) = 0 if

If S_(1)=alpha^(2)+beta^(2)-a^(2) , then angle between the tangents from (alpha, beta) to the circle x^(2)+y^(2)=a^(2) , is

Find the values of the parameter a such that the rots alpha,beta of the equation 2x^2+6x+a=0 satisfy the inequality alpha//beta+beta//alpha<2.

A variable line passes through the fixed point (alpha,beta) . The locus of the foot of the perpendicular from the origin on the line is,

The gradient of one of the lines ax^2+2hxy+by^2=0 is twice that of the other, then

If the roots of the equation x^2-px+q=0 be alpha,beta and the roots of the equation x^2-ax+b=0 be alpha,1/beta then prove that, bq(a-p)^2=(q-b)^2 .

If the tangent to the curve 2y^3=ax^2+x^3 at the point (a,a) cuts off Intercepts alpha and beta on the coordinate axes, (where alpha^2+beta^2=61) then the value of a is

Two roots of the equation ax^2 +bx +c=0 is alpha,beta then find the value of alpha^2 + beta^2