Home
Class 12
MATHS
Solve cos2xgt|sinx|,x in(-(pi)/(2),pi)...

Solve `cos2xgt|sinx|,x in(-(pi)/(2),pi)`

Text Solution

Verified by Experts

Draw the graphs of `y=cos2xandy=|sinx|`.

Let `cos2x=sinx`
`implies2sin^(2)x+sinx-1=0`
`impliessinx=-1,(1)/(2)`
But `sinxne-1impliessinx=(1)/(2)` Clearly, from the graphs of `y=|sinx|andy=cos2x,x=pm(pi)/(6),(5pi)/(6)`.
For `cos2xgt|sinx|`, the graph of `y=cos2x` must lie abvoe the graph of `y=|sinx|`.
From the graph the solution set is `x in(-(pi)/(6),(pi)/(6))uu((5pi)/(6),pi)`.
Promotional Banner

Topper's Solved these Questions

  • GRAPH OF INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE PUBLICATION|Exercise Exercises|18 Videos
  • GRAPHS OF POLYNOMIAL AND RATIONAL FUNCTIONS

    CENGAGE PUBLICATION|Exercise Exercises|17 Videos

Similar Questions

Explore conceptually related problems

Solve cos2x >|sinx|,x in (pi/2,pi)

Solve |sinx+cosx|=|sinx|+|cosx|,x in [0,2pi] .

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx) ,for x in (pi/4,pi/2) (b) cosx+sinx ,for x in (0,pi/4) (c) -(cosx+sinx) ,for x in (0,pi/4) (d) cosx-sinx ,for x in (pi/4,pi/2)

Solve the equation sqrt(|sin^(-1)| cos x|| + |cos^(-1)| sin x||) = sin^(-1)|cos x | -cos^(-1)| sin x|, (-pi)/(2) le x le (pi)/(2)

Let f(x)=intx^(sinx)(1+xcosxdotlnx+sinx)dxa n df(pi/2)=(pi^2)/4dot Then the value of |"cos"(f(pi))| is____

Solve 2 cos^(-1) x + sin^(-1) x = (2pi)/(3)

Solve: sqrt(3)cosx + sinx = 1(-2pi lt x lt 2pi) .

Solve cos^(-1)(cosx)>sin^(-1)(sinx),x in [0,2pi]

The value of the integral int_(-pi/2)^(pi/2) (x^2 + In(pi + x)/(pi - x))cos x dx is

tan^(-1)[(cosx)/(1+sinx)] is equal to pi/4-x/2,when (a) x in (-pi/2,(3pi)/2) (b) x in (-pi/2,pi/2) (c) x in (-pi/2,pi) (d) x in (-(3pi)/2,pi/2)