Home
Class 12
MATHS
Find the value of the following: (i) ...

Find the value of the following:
(i) ` log_(10) 2 + log_(10) 5`
(ii) ` log_(3) (sqrt(11)-sqrt2) + log_(3) (sqrt11+sqrt2)`
(iii) ` log_(7) 35 - log_(7) 5`

Text Solution

Verified by Experts

(i) `log_(10)2+ log_(10) 5 = log_(10)(2 xx 5)= log_(10) 10 = 1`
`(ii) log_(3)(sqrt11-sqrt2)+log_(3)(sqrt11+sqrt2)`
` " "= log_(3) (sqrt11-sqrt2) xx (sqrt11+sqrt2)`
`" "= log_(3) (11-2)=log_(3)9=2 (as 3^(2) = 9)`
`(iii) log_(7)35-log_(7) 5 = log _(7). 35/5 = log_(7) 7 = 1`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 1.21|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 1.22|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 1.19|1 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE PUBLICATION|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

Find the value of log_2sqrt128

Find the value of log_(5) log_(2)log_(3) log_(2) 512 .

Knowledge Check

  • Find the value of x : 49^(log7)^11 = log_2^(2)^2 = 25 + log_10 x

    A
    1
    B
    2
    C
    `10^(100)`
    D
    100
  • Similar Questions

    Explore conceptually related problems

    Find the value of log_(2) (1/(7^(log_(7) 0.125))) .

    Solve : (iv) log_(10)x - log_(10)sqrt(x) = 2/(log_(10)x)

    Find the value of sqrt((log_(0.5)4)^(2)) .

    Find the value of (log)_(2sqrt(3))1728.

    Find the values : log_(2)[log_(2){log_(3)(log_(3)27^(3))}]

    Solve log_(2)(2sqrt(17-2x))=1 - log_(1//2)(x-1) .

    Calculate : log_(2)log_(sqrt2)log_(3)(81)