Home
Class 12
MATHS
Let x=(0. 15)^(20)dot Find the character...

Let `x=(0. 15)^(20)dot` Find the characteristic and mantissa of the logarithm of `x` to the base 10. Assume `(log)_(10)2=0. 301a n d(log)_(10)3=0. 477.`

Text Solution

Verified by Experts

` log x = log(0.15)^(20)= 20 log (15/100)`
` = 20 [log 15-2]`
` = 20[ log 3+log 5-2]`
` = 20[log 3+1-log 2 - 2]" "(.:' log_(10) 5 = log_(10) 10/2)`
`=20[-1+log 3 - log 2]`
` =20 [ -1+0.477-0.301]`
` =- 20 xx 0.824`
` =- 16.48`
` = bar(17).52`
Hence, Characteristic =- 17 and Mantissa = ` 0.52`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 1.80|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 1.81|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise ILLUSTRATION 1.78|1 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE PUBLICATION|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

Prove that log_(10)2gt0.3

If log_(10)2=0.30103 find the value of log_(5)32

Knowledge Check

  • The number of digits in 20^(301) (given log_(10)2=0.3010) is

    A
    602
    B
    301
    C
    392
    D
    391
  • Similar Questions

    Explore conceptually related problems

    Find the value of log_(10)0.001

    Prove that 1/3<(log)_(10)3<1/2dot

    Solve (x^(log_(10)3))^(2) - (3^(log_(10)x)) - 2 = 0 .

    Solve (log)_(0. 2)|x-3|geq0.

    Solve : (1)/(log_(x)10)+2=(2)/(log_(0.5)(10))

    The real solutions of the equation 2^(x+2). 5^(6-x)=10^(x^2) is/are 1 (b) 2 (c) -(log)_(10)(250) (d) (log)_(10)4-3

    Find the approximate value of log_(10)10.1 it being given that log_10e=0.4343