Home
Class 12
MATHS
If y=a^(1/(1-(log)a x))a n dz=a^(1/(1-(l...

If `y=a^(1/(1-(log)_a x))a n dz=a^(1/(1-(log)_a y)),t h e np rov et h a tx=a^(1/(1-(log)_a z))`

Text Solution

Verified by Experts

` log_(a) y = 1/(1 - log_(a) x)`
` rArr 1 - log_(a) y = 1 - 1/(1-log_(a) x)`
` = (-log_(a) x)/(1-log_(a)x)`
` or 1/(1-log_(a)y)=(1-log_(a)x)/(-log_(a) x)` ...(i)
` "But " z = a^(1/(1-log_(a)y))`
` rArr log_(a) z =1/(1=log_(a)y)=-1/(log_(a) x) +1`
` or 1/(log_(a)x) =1-log_(a)z`
` or log_(a) x = 1/(1-log_(a)z)`
` or x = a^(1/(1-log_(a)z)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise Example 1.5|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise Example 1.6|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE PUBLICATION|Exercise Example 1.3|1 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE PUBLICATION|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE PUBLICATION|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

If y=a^(1/(1-(log)_a x)) and z=a^(1/(1-(log)_a y)) ,then prove that x=a^(1/(1-(log)_a z))

If y = a^(1/(1-log_(a)x)) and z = a^(1/(1-log_(a)y)) , then show that x = a^(1/(1-log_(a)z))

If y=10^((1)/(1-log_(10)x)) and z=10^((1)/(1-log_(10)y)) show that x=10^((1)/(1-log_(10)z))

If x=(log)_(2a)a , y=(log)_(3a)2a ,z=(log)_(4a)3a ,p rov et h a t1+x y z=2y zdot

Simplify: 1/(1+(log)_a b c)+1/(1+(log)_b c a)+1/(1+(log)_c a b)

If (log x)/(y-z) = (log y)/(z-x) = (log z)/(x-y) , then prove that xyz = 1 .

Draw the graph of y=1/(log_(e)x)

y=2^(1/((log)_x4) , then find x in terms of y.

IfI_n=int_0^1x^n(tan^(-1)x)dx ,t h e np rov et h a t (n+1)I_n+(n-1)I_(n-2)=-1/n+pi/2

If x y^2=4a n d(log)_3((log)_2x)+(log)_(1/3)((log)_(1/2)y)=1,t h e nxe q u a l s 4 (b) 8 (c) 16 (d) 64